abcd-dcba

20 13 + 1 3 2 + 1 3 3 + + 1 3 n 20\mid 13+13^2+13^3+\dots+13^n Which of the following can be n n ?

13 1001 None of the others 78 76

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Marco Brezzi
Aug 4, 2017

Checking powers of 13 13 modulo 20 20

{ 1 3 1 13 i m o d i 20 1 3 2 9 i m o d i 20 1 3 3 17 i m o d i 20 1 3 4 1 i m o d i 20 \begin{cases} 13^1≡13\phantom{i}mod\phantom{i}20\\ 13^2≡9\phantom{i}mod\phantom{i}20\\ 13^3≡17\phantom{i}mod\phantom{i}20\\ 13^4≡1\phantom{i}mod\phantom{i}20\\ \cdots \end{cases}

And then the pattern repeats since 1 3 4 1 i m o d i 20 13^4≡1\phantom{i}mod\phantom{i}20

Adding up all this remainders

13 + 9 + 17 + 1 40 0 i m o d i 20 13+9+17+1≡40≡0\phantom{i}mod\phantom{i}20

Since none of the partial sums 13 , 13 + 9 , 13 + 9 + 17 13,13+9,13+9+17 is divisible by 20 20 , n n has to be a multiple of 4 4 in order to have

20 k = 1 n 1 3 k 20\mid\sum_{k=1}^n 13^k

Among the answers, only 76 \boxed{76} is a multiple of 4 4

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...