An algebra problem by Prem Chebrolu

Algebra Level 3

P + 3 Q + 5 R + 15 S = 1 1 + 3 + 5 \text P+\sqrt{3}\text Q + \sqrt{5}\text R +\sqrt{15}\text S = \frac{1}{1+\sqrt{3}+\sqrt{5}} Then the value of P \text P . Where P, Q, R, S \text{P, Q, R, S} are rational.

1 11 \frac{-1}{11} 3 11 \frac{3}{11} 7 11 \frac{7}{11} 2 11 \frac{-2}{11}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Naren Bhandari
May 10, 2018

Let's us take right hand side M = 1 1 + 3 + 5 = 1 + 3 5 ( 1 + 3 ) 2 5 2 c c c c c rationalization M = 1 + 3 5 ( 1 + 2 3 + 3 ) 5 = 1 + 3 5 2 3 1 = ( 1 + 3 5 ) ( 2 3 + 1 ) 12 1 M = 2 3 + 1 + 6 + 3 2 15 5 11 = 7 + 3 3 5 2 15 11 = P + Q 3 R 5 S 15 11 M=\dfrac{1}{1+\sqrt3 + \sqrt5} = \dfrac{1 +\sqrt 3 - \sqrt 5 }{\,(1 +\sqrt 3)^2 - \sqrt 5^2 } \phantom{ccccc}{\color{#3D99F6}\text{rationalization}}\\ M = \dfrac{1 +\sqrt 3 - \sqrt 5 }{\,(1 + 2\sqrt 3 + 3)- 5 } = \dfrac{ 1 + \sqrt 3 -\sqrt 5}{2\sqrt3 -1 } = \dfrac{ \,(1 +\sqrt 3 -\sqrt 5)\,(2\sqrt{3} +1) }{12-1} \\ M = \dfrac{2\sqrt 3 +1 + 6 + \sqrt 3 - 2\sqrt {15} -\sqrt 5 }{11} = \dfrac{7 + 3\sqrt 3 -\sqrt 5 -2 \sqrt{15} }{11} =\dfrac{P + Q\sqrt 3 - R\sqrt5 - S\sqrt {15}}{11} Hence, the value of P = 7 11 P = \boxed{\dfrac{7}{11}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...