An algebra problem by Ραμών Αδάλια

Algebra Level 4

Let a n = k = 1 n ( k + 2 ) j = 1 k i = 1 j i ! ( i 2 + i + 1 ) { a }_{ n }=\sum _{ k=1 }^{ n }{ (k+2)\sum _{ j=1 }^{ k }{ \sum _{ i=1 }^{ j }{ i!({ i }^{ 2 }+i+1) } } } and b n = a n + 1 a n . { b }_{ n }={ a }_{ n+1 }-{ a }_{ n } . Compute b 4 b_4 .


Notation: ! ! is the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8 8! = 1\times2\times3\times\cdots\times8 .


The answer is 35231.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Anirudh Sreekumar
Mar 27, 2017

Let π ( k ) = ( k + 2 ) j = 1 k i = 1 j i ! ( i 2 + i + 1 ) = ( k + 2 ) j = 1 k i = 1 j i ! ( ( i + 1 ) 2 i ) = ( k + 2 ) j = 1 k i = 1 j ( i + 1 ) ( i + 1 ) ! i ( i ! ) We can see that the sum is telescoping = ( k + 2 ) j = 1 k ( ( j + 1 ) ( j + 1 ) ! 1 ) = ( k + 2 ) ( j = 1 k ( j + 1 ) ! ( j + 2 1 ) ) k = ( k + 2 ) ( j = 1 k ( j + 2 ) ! ( j + 1 ) ! ) k Once again, the sum is telescoping π ( k ) = ( k + 2 ) ( ( ( k + 2 ) ! 2 ) k ) = ( k + 2 ) ( k + 2 ) ! ( k + 2 ) 2 a n = k = 1 n π ( k ) b n = a n + 1 a n = k = 1 n + 1 π ( k ) k = 1 n π ( k ) = π ( n + 1 ) Thus we have, b 4 = π ( 5 ) = 7 ( 7 ! 7 ) = 35231 \begin{aligned}\text{Let}\hspace{2mm}\pi (k)&=(k+2)\sum _{ j=1 }^{ k }{ \sum _{ i=1 }^{ j }{ i!({ i }^{ 2 }+i+1) } }\\&=(k+2)\sum _{ j=1 }^{ k }{ \sum _{ i=1 }^{ j }{ i!((i+1)^2-i) }} \\&=(k+2)\sum _{ j=1 }^{ k }{ \sum _{ i=1 }^{ j }{( i+1)(i+1)!-i (i!)}}&\small\color{#3D99F6}\text{We can see that the sum is telescoping}\\&=(k+2)\sum _{ j=1 }^{ k }{(( j+1)(j+1)!-1 )}\\&=(k+2)\left(\sum _{ j=1 }^{ k}{( j+1)!(j+2-1)}\right)-k\\&=(k+2)\left(\sum _{ j=1 }^{ k}{( j+2)!-(j+1)!}\right)-k&\small\color{#3D99F6}\text{Once again, the sum is telescoping}\\\pi(k)&=(k+2)\left(((k+2)!-2)-k\right)=(k+2)(k+2)!-(k+2)^2\\\hspace{5mm}\\a_{n}&=\sum_{k=1}^n \pi(k)\\b_{n}&=a_{n+1}-a_{n}=\sum_{k=1}^{n+1} \pi(k)-\sum_{k=1}^n \pi(k)=\pi(n+1)\\&\hspace{-5mm}\color{#3D99F6}\text{Thus we have,}\\b_{4}&=\pi(5)=7(7!-7)=\boxed{35231}\end{aligned}

Tapas Mazumdar
Mar 27, 2017

a n + 1 = k = 1 n + 1 ( k + 2 ) j = 1 k i = 1 j i ! ( i 2 + i + 1 ) = [ { ( n + 1 ) + 2 } j = 1 n + 1 i = 1 j i ! ( i 2 + i + 1 ) ] + [ k = 1 n ( k + 2 ) j = 1 k i = 1 j i ! ( i 2 + i + 1 ) ] = ( n + 3 ) j = 1 n + 1 i = 1 j i ! ( i 2 + i + 1 ) + a n b n = a n + 1 a n = ( n + 3 ) j = 1 n + 1 i = 1 j i ! ( i 2 + i + 1 ) \begin{aligned} a_{n+1} &= \sum _{ k=1 }^{ n+1 }{ (k+2)\sum _{ j=1 }^{ k }{ \sum _{ i=1 }^{ j }{ i!({ i }^{ 2 }+i+1) } } } \\ &= \left[ \left\{ \left( n+1 \right) + 2 \right\} \sum _{ j=1 }^{ n+1 }{ \sum _{ i=1 }^{ j }{ i!({ i }^{ 2 }+i+1) } } \right] + \left[ \sum _{ k=1 }^{ n }{ (k+2)\sum _{ j=1 }^{ k }{ \sum _{ i=1 }^{ j }{ i!({ i }^{ 2 }+i+1) } } } \right] \\ &= \left( n+3 \right) \sum _{ j=1 }^{ n+1 }{ \sum _{ i=1 }^{ j }{ i!({ i }^{ 2 }+i+1) } } + a_n \end{aligned} \\ \\ \therefore \ \displaystyle b_n = a_{n+1} - a_n = \left( n+3 \right) \sum _{ j=1 }^{ n+1 }{ \sum _{ i=1 }^{ j }{ i!({ i }^{ 2 }+i+1) } }

Thus

b 4 = 7 j = 1 5 i = 1 j i ! ( i 2 + i + 1 ) = 35231 b_4 = 7 \displaystyle \sum _{ j=1 }^{ 5 }{ \sum _{ i=1 }^{ j }{ i!({ i }^{ 2 }+i+1) } } = \boxed{35231}


The calculations for the sum in b 4 b_4 :

j = 1 5 i = 1 j i ! ( i 2 + i + 1 ) = j = 1 5 [ i = 1 j i 2 i ! + i = 1 j i i ! + i = 1 j i ! ] = j = 1 5 [ i = 1 j { ( i + 1 ) 1 } 2 i ! + i = 1 j { ( i + 1 ) ! i ! } + i = 1 j i ! ] = j = 1 5 [ i = 1 j ( i + 1 ) 2 i ! 2 i = 1 j ( i + 1 ) i ! + i = 1 j i ! + i = 1 j ( i + 1 ) ! i = 1 j i ! + i = 1 j i ! ] = j = 1 5 [ i = 1 j ( i + 1 ) ( i + 1 ) ! 2 i = 1 j i i ! 2 i = 1 j i ! + i = 1 j i ! + i = 1 j ( i + 1 ) ! ] = j = 1 5 [ i = 1 j { ( i + 2 ) ! ( i + 1 ) ! } 2 i = 1 j { ( i + 1 ) ! i ! } i = 1 j i ! + i = 1 j ( i + 1 ) ! ] = j = 1 5 [ i = 1 j ( i + 2 ) ! i = 1 j ( i + 1 ) ! 2 i = 1 j ( i + 1 ) ! + 2 i = 1 j i ! i = 1 j i ! + i = 1 j ( i + 1 ) ! ] = j = 1 5 [ i = 1 j ( i + 2 ) ! 2 i = 1 j ( i + 1 ) ! + i = 1 j i ! ] = j = 1 5 [ i = 1 j { ( i + 2 ) ! ( i + 1 ) ! } i = 1 j { ( i + 1 ) ! i ! } ] = j = 1 5 [ { ( j + 2 ) ! 2 ! } { ( j + 1 ) ! 1 ! } ] = j = 1 5 { ( j + 2 ) ! ( j + 1 ) ! } j = 1 5 { 2 ! 1 ! } = ( 7 ! 2 ! ) 5 = 5033 \begin{aligned} \sum_{j=1}^5 \sum_{i=1}^j i!(i^2 + i +1) &= \sum_{j=1}^5 \left[ \sum_{i=1}^j i^2 \cdot i! + \sum_{i=1}^j i \cdot i! + \sum_{i=1}^j i! \right] \\ &= \sum_{j=1}^5 \left[ \sum_{i=1}^j {\left\{ (i+1)-1 \right\}}^2 \cdot i! + \sum_{i=1}^j \left\{ (i+1)! - i! \right\} + \sum_{i=1}^j i! \right] \\ &= \sum_{j=1}^5 \left[ \sum_{i=1}^j {(i+1)}^2 \cdot i! - 2 \sum_{i=1}^j (i+1) \cdot i! + \sum_{i=1}^j i! + \sum_{i=1}^j (i+1)! - \cancel{\sum_{i=1}^j i!} + \cancel{\sum_{i=1}^j i!} \right] \\ &= \sum_{j=1}^5 \left[ \sum_{i=1}^j (i+1) \cdot (i+1)! - 2 \sum_{i=1}^j i \cdot i! - 2 \sum_{i=1}^j i! + \sum_{i=1}^j i! + \sum_{i=1}^j (i+1)! \right] \\ &= \sum_{j=1}^5 \left[ \sum_{i=1}^j \left\{ (i+2)! - (i+1)! \right\} - 2 \sum_{i=1}^j \left\{ (i+1)! - i! \right\} - \sum_{i=1}^j i! + \sum_{i=1}^j (i+1)! \right] \\ &= \sum_{j=1}^5 \left[ \sum_{i=1}^j (i+2)! - \cancel{\sum_{i=1}^j (i+1)!} - 2 \sum_{i=1}^j (i+1)! + 2 \sum_{i=1}^j i! - \sum_{i=1}^j i! + \cancel{\sum_{i=1}^j (i+1)!} \right] \\ &= \sum_{j=1}^5 \left[ \sum_{i=1}^j (i+2)! - 2 \sum_{i=1}^j (i+1)! + \sum_{i=1}^j i! \right] \\ &= \sum_{j=1}^5 \left[ \sum_{i=1}^j \left\{ (i+2)! - (i+1)! \right\} - \sum_{i=1}^j \left\{ (i+1)! - i! \right\} \right] \\ &= \sum_{j=1}^5 \bigg[ \left\{ (j+2)! - 2! \right\} - \left\{ (j+1)! - 1! \right\} \bigg] \\ &= \sum_{j=1}^5 \left\{ (j+2)! - (j+1)! \right\} - \sum_{j=1}^5 \left\{ 2! - 1! \right\} \\ &= \left( 7! - 2! \right) - 5 \\ &= 5033 \end{aligned}

b 4 = 7 × 5033 = 35231 \implies b_4 = 7 \times 5033 = 35231

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...