Absolute greater than 10 10

If n Z n\in\mathbb Z

80 n + 1 > 10 \large \left| \dfrac{80}{n+1} \right|>10

n n satisfy the above inequality. Find the sum of all n |n| .


Inspiration


The answer is 56.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Md Mehedi Hasan
Dec 9, 2017

80 n + 1 > 10 6400 ( n + 1 ) 2 > 100 squaring both side ( n + 1 ) 2 6400 < 1 100 ( n + 1 ) 2 < 64 n 2 + 2 n 63 < 0 ( n + 9 ) ( n 7 ) < 0 \left|\dfrac{80}{n+1} \right|>10\\ \dfrac{6400}{(n+1)^2}>100\quad{\boxed{\color{#3D99F6}\text{squaring both side}}}\\ \dfrac{(n+1)^2}{6400}<\dfrac{1}{100}\\ (n+1)^2<64\\ n^2+2n-63<0\\ (n+9)(n-7)<0

The solution is { n Z : 9 < n < 7 , n 1 } \{n\in\mathbb Z:-9<n<7,n\neq-1\}

So, sum= ( n = 8 6 n ) 1 = 57 1 = 56 \left(\sum_{n=-8}^{6}{|n|}\right)-|-1|\\=57-1\\=\boxed{56}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...