Absolute-ly Ab-salute

Algebra Level 5

Find the minimum value of f ( x ) f(x) for real x x such that

f ( x ) = x 1 3 + 2 x 2 3 + 3 x 3 3 + . . . + 19 x 1 9 3 + 20 x 2 0 3 \large f(x)=|x-1^{3}|+|2x-2^{3}|+|3x-3^{3}|+...+|19x-19^{3}|+|20x-20^{3}|

If the answer can be written as 2 a 2 2a^{2} , where a a is a positive integer, find the value of a a .


This is not my original problem, as it is a modification of a competition problem.

You can attempt the full set of problems here .

This is part of the set Things Get Harder! .


The answer is 105.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Donglin Loo
Jan 19, 2018

1 + 2 + 3 + . . . + 20 = 20 × 21 2 = 210 1+2+3+...+20=\frac{20\times21}{2}=210

1 + 2 + 3 + . . . + 14 = 14 × 15 2 = 105 1+2+3+...+14=\frac{14\times15}{2}=105

15 + 16 + 17 + . . . + 20 = 210 105 = 105 15+16+17+...+20=210-105=105

So, ( 1 + 2 + 3 + . . . + 14 ) ( 15 + 16 + 17 + . . . + 20 ) = 0 (1+2+3+...+14)-(15+16+17+...+20)=0

The above calcution is useful indeed as by algebraic manipulation:

f ( x ) = x 1 3 + 2 x 2 3 + 3 x 3 3 + . . . + 19 x 1 9 3 + 20 x 2 0 3 = x 1 3 + 2 x 2 3 + 3 x 3 3 + . . . + 14 x 1 4 3 + 1 5 3 15 x + . . . + 1 9 3 19 x + 2 0 3 20 x x 1 3 + 2 x 2 3 + 3 x 3 3 + . . . + 14 x 1 4 3 + 1 5 3 15 x + . . . + 1 9 3 19 x + 2 0 3 20 x = 0 + 2 0 3 + 1 9 3 + 1 8 3 + . . . + 1 5 3 1 4 3 1 3 3 1 2 3 2 3 1 3 = ( 2 0 3 + 1 9 3 + 1 8 3 + . . . + 2 3 + 1 3 ) 2 × ( 1 4 3 + 1 3 3 + 1 2 3 + . . . + 2 3 + 1 3 ) = ( 20 × 21 2 ) 2 2 × ( 14 × 15 2 ) 2 = 21 0 2 2 × 10 5 2 = 2 2 × 10 5 2 2 × 10 5 2 = 2 × 10 5 2 f(x)=|x-1^{3}|+|2x-2^{3}|+|3x-3^{3}|+...+|19x-19^{3}|+|20x-20^{3}|=|x-1^{3}|+|2x-2^{3}|+|3x-3^{3}|+...+|14x-14^{3}|+|15^{3}-15x|+...+|19^{3}-19x|+|20^{3}-20x|\geq|x-1^{3}+2x-2^{3}+3x-3^{3}+...+14x-14^{3}+15^{3}-15x+...+19^{3}-19x+20^{3}-20x|=0+20^3+19^3+18^3+...+15^3-14^3-13^3-12^3-2^3-1^3=(20^3+19^3+18^3+...+2^3+1^3)-2\times(14^3+13^3+12^3+...+2^3+1^3)=(\frac{20\times21}{2})^{2}-2\times(\frac{14\times15}{2})^{2}=210^{2}-2\times105^{2}=2^2\times105^2-2\times105^2=2\times105^{2}

Quite a good observation..(+1)!!!!

rajdeep brahma - 2 years, 11 months ago

@rajdeep brahma Thanks!

donglin loo - 2 years, 11 months ago

I recognize this :D

Kenneth Tan - 2 years, 11 months ago

Log in to reply

@Kenneth Tan It's from the Chen Jing Run Math Competition 2017 though I did not get this correct in that contest. I just make a few changes to that problem. Anyway how do you solve this problem?

donglin loo - 2 years, 11 months ago

Log in to reply

Posted a solution

Kenneth Tan - 2 years, 11 months ago
Kenneth Tan
Jul 2, 2018

The zero-points of each absolute term x 1 3 |x-1^3| , 2 x 2 3 |2x-2^3| , 3 x 3 3 |3x-3^3| , \ldots , 20 x 2 0 3 |20x-20^3| are x = 1 2 x=1^2 , x = 2 2 x=2^2 , x = 3 2 x=3^2 , \ldots , x = 2 0 2 x=20^2 respectively, thus if we continuously crank x x from -\infty to \infty , the signs of x 1 3 |x-1^3| , 2 x 2 3 |2x-2^3| , 3 x 3 3 |3x-3^3| , \ldots , 20 x 2 0 3 |20x-20^3| all start at negative and will take turns become positive (i.e. first the sign of x 1 3 |x-1^3| becomes positive when we crank x x past 1 2 1^2 , then followed by 2 x 2 3 |2x-2^3| past x = 2 2 x=2^2 , then 3 x 3 3 |3x-3^3| etc.)

Plot a "derivative table":

d d x x 1 3 d d x 2 x 2 3 d d x 3 x 3 3 d d x 19 x 1 9 3 d d x 20 x 2 0 3 d d x f ( x ) x < 1 2 1 2 3 19 20 210 1 2 x < 2 2 + 1 2 3 19 20 208 2 2 x < 3 2 + 1 + 2 3 19 20 204 3 2 x < 4 2 + 1 + 2 + 3 19 20 198 1 9 2 x < 2 0 2 + 1 + 2 + 3 + 19 20 170 2 0 2 x + 1 + 2 + 3 + 19 + 20 210 \begin{array}{|c|c|c|c|c|c|c|c|} \hline \\ & \dfrac{d}{dx}|x-1^3| & \dfrac{d}{dx}|2x-2^3| & \dfrac{d}{dx}|3x-3^3| & \ldots & \dfrac{d}{dx}|19x-19^3| & \dfrac{d}{dx}|20x-20^3| & \dfrac{d}{dx}f(x) \\ \hline x<1^2 & -1 & -2 & -3 & \ldots & -19 & -20 & -210 \\ \hline 1^2\leqslant x<2^2 & \color{#20A900}+1 & -2 & -3 & \ldots & -19 & -20 & -208 \\ \hline 2^2\leqslant x<3^2 & \color{#20A900}+1 & \color{#20A900}+2 & -3 & \ldots & -19 & -20 & -204 \\ \hline 3^2\leqslant x<4^2 & \color{#20A900}+1 & \color{#20A900}+2 & \color{#20A900}+3 & \ldots & -19 & -20 & -198 \\ \hline \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ \hline 19^2\leqslant x<20^2 & \color{#20A900}+1 & \color{#20A900}+2 & \color{#20A900}+3 & \ldots & \color{#20A900}+19 & -20 & 170 \\ \hline 20^2\leqslant x & \color{#20A900}+1 & \color{#20A900}+2 & \color{#20A900}+3 & \ldots & \color{#20A900}+19 & \color{#20A900}+20 & 210 \\ \hline \end{array}

Where f ( x ) = d d x f ( x ) f'(x)=\dfrac{d}{dx}f(x) is the sum of the derivatives of all the absolute terms, which for n 2 x < ( n + 1 ) 2 n^2\leqslant x<(n+1)^2 , 1 n 19 1\leqslant n\leqslant19 , can be computed with d d x f ( x ) = 2 i = 1 n i i = 1 20 i = n ( n + 1 ) 210 \displaystyle \dfrac{d}{dx}f(x)=2\sum_{i=1}^ni-\sum_{i=1}^{20}i=n(n+1)-210

Notice that f ( x ) f'(x) starts out at negative and increases at intervals as x x increases, we can estimate that the shape of the graph of f ( x ) f(x) looks something like this:

To find the minimum value of f ( x ) f(x) , our target is to make f ( x ) f'(x) as close to 0 as possible .

Turns out it's possible for f ( x ) f'(x) to be equal to 0, if we solve for f ( x ) = 0 f'(x)=0 : n ( n + 1 ) 210 = 0 n(n+1)-210=0 n 2 + n 210 = 0 n^2+n-210=0 n = 14 ( n > 0 ) \therefore n=14 \quad(n>0)

Hence, 1 4 2 x < 1 5 2 14^2\leqslant x<15^2 is when the minimum of f ( x ) f(x) occurs, when 14 x < 15 14\leqslant x<15 : f ( x ) = ( x 1 3 ) + ( 2 x 2 3 ) + ( 3 x 3 3 ) + + ( 14 x 1 4 3 ) ( 15 x 1 5 3 ) ( 20 x 2 0 3 ) = 1 3 2 3 3 3 1 4 3 + 1 5 3 + + 2 0 3 = [ 20 × 21 2 ] 2 2 [ 14 × 15 2 ] 2 = 22050 \begin{aligned}f(x)&=(x-1^3)+(2x-2^3)+(3x-3^3)+\ldots+(14x-14^3)-(15x-15^3)-\ldots-(20x-20^3) \\ &=-1^3-2^3-3^3-\ldots-14^3+15^3+\ldots+20^3 \\ &=\left[\frac{20\times21}{2}\right]^2-2\left[\frac{14\times15}{2}\right]^2 \\ &=22050 \end{aligned} (the x x terms all cancel out since f ( x ) = 0 f'(x)=0 ) 2 a 2 = 22050 \therefore 2a^2=22050 a = 105 a=105

Thanks for your detailed solution

donglin loo - 2 years, 11 months ago

@Kenneth Tan Isn't it 0 n 19 0\leq n\leq19 ?

donglin loo - 2 years, 11 months ago

Log in to reply

We don't have a case for 0 x 1 2 0\leqslant x\leqslant1^2 :)

Kenneth Tan - 2 years, 11 months ago

Well but when n = 0 n=0 , we get f ( x ) = 0 210 = 210 f'(x)=0-210=-210 . So I think it should be included too.

donglin loo - 2 years, 11 months ago

Log in to reply

Well it doesn't comply exactly since the condition is x < 1 -\infty\leqslant x<1 not just 0 x < 1 0\leqslant x<1 .

Kenneth Tan - 2 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...