Let be a positive integer. Find the minimum value of
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let
f ( x ) = ∣ x + 8 ∣ + ∣ x + 3 ∣ + ∣ x − 2 ∣ + ∣ x − 6 ∣
The points of non differentiability where the function changes are at x = − 8 , x = − 3 , x = 2 , x = 6 , since
∣ x + 8 ∣ = { − x − 8 c c c c if x < − 8 x + 8 c c c c c c if x ≥ − 8
∣ x + 3 ∣ = { − x − 3 c c c c if x < − 3 x + 3 c c c c c c if x ≥ − 3
∣ x − 2 ∣ = { − x + 2 c c c c if x < 2 x − 2 c c c c c c if x ≥ 2
∣ x − 6 ∣ = { − x + 6 c c c c if x < 6 x − 6 c c c c c c if x ≥ 6
Hence
f ( x ) = ⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ − x − 8 − x − 3 − x + 2 − x + 6 = − 4 x − 3 c c c c if x < − 8 x + 8 − x − 3 − x + 2 − x + 6 = − 2 x + 1 3 c i c c c if − 8 ≤ x < 3 x + 8 + x + 3 − x + 2 − x + 6 = 1 9 c c c c c i c c c c c c if − 3 ≤ x < 2 x + 8 + x + 3 + x − 2 − x + 6 = 2 x + 1 5 c c c c i c c if 2 ≤ x < 6 x + 8 + x + 3 + x − 2 + x − 6 = 4 x + 3 c c c i c c c c if x ≥ 6
f ( x ) = ⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ − 4 x − 3 c c c c c c if x < − 8 − 2 x + 1 3 c i c c c if − 8 ≤ x < 3 1 9 c c c c c i c c c c c c if − 3 ≤ x < 2 2 x + 1 5 c c c c i c c if 2 ≤ x < 6 4 x + 3 c c c i c c c c if x ≥ 6
Evaluating the minimum value of each of the parts of the function
min { f ( x ) } = ⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ − 4 ( − 8 ) − 3 = 2 9 − 2 ( − 3 ) + 1 3 = 1 9 1 9 2 ( 2 ) + 1 5 = 1 9 4 ( 6 ) + 3 = 2 7
Thus, the minimum of f ( x ) is 1 9
A graph of f ( x )
.