Absolute minimum

Algebra Level 3

Let x x be a positive integer. Find the minimum value of x + 8 + x + 3 + x 2 + x 6 |x+8|+|x+3|+|x-2|+|x-6|


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Marco Brezzi
Aug 21, 2017

Let

f ( x ) = x + 8 + x + 3 + x 2 + x 6 f(x)=|x+8|+|x+3|+|x-2|+|x-6|

The points of non differentiability where the function changes are at x = 8 , x = 3 , x = 2 , x = 6 x=-8,x=-3,x=2,x=6 , since

x + 8 = { x 8 c c c c if x < 8 x + 8 c c c c c c if x 8 |x+8|=\begin{cases} -x-8\phantom{cccc}\text{if }x<-8\\ x+8\phantom{cccccc}\text{if }x\geq -8 \end{cases}

x + 3 = { x 3 c c c c if x < 3 x + 3 c c c c c c if x 3 |x+3|=\begin{cases} -x-3\phantom{cccc}\text{if }x<-3\\ x+3\phantom{cccccc}\text{if }x\geq -3 \end{cases}

x 2 = { x + 2 c c c c if x < 2 x 2 c c c c c c if x 2 |x-2|=\begin{cases} -x+2\phantom{cccc}\text{if }x<2\\ x-2\phantom{cccccc}\text{if }x\geq 2 \end{cases}

x 6 = { x + 6 c c c c if x < 6 x 6 c c c c c c if x 6 |x-6|=\begin{cases} -x+6\phantom{cccc}\text{if }x<6\\ x-6\phantom{cccccc}\text{if }x\geq 6 \end{cases}

Hence

f ( x ) = { x 8 x 3 x + 2 x + 6 = 4 x 3 c c c c if x < 8 x + 8 x 3 x + 2 x + 6 = 2 x + 13 c i c c c if 8 x < 3 x + 8 + x + 3 x + 2 x + 6 = 19 c c c c c i c c c c c c if 3 x < 2 x + 8 + x + 3 + x 2 x + 6 = 2 x + 15 c c c c i c c if 2 x < 6 x + 8 + x + 3 + x 2 + x 6 = 4 x + 3 c c c i c c c c if x 6 f(x)=\begin{cases} -x-8-x-3-x+2-x+6=-4x-3\phantom{cccc}\text{if }x<-8\\ x+8-x-3-x+2-x+6=-2x+13\phantom{ciccc}\text{if }-8\leq x<3\\ x+8+x+3-x+2-x+6=19\phantom{cccccicccccc}\text{if }-3\leq x<2\\ x+8+x+3+x-2-x+6=2x+15\phantom{ccccicc}\text{if }2\leq x<6\\ x+8+x+3+x-2+x-6=4x+3\phantom{cccicccc}\text{if }x\geq 6 \end{cases}

f ( x ) = { 4 x 3 c c c c c c if x < 8 2 x + 13 c i c c c if 8 x < 3 19 c c c c c i c c c c c c if 3 x < 2 2 x + 15 c c c c i c c if 2 x < 6 4 x + 3 c c c i c c c c if x 6 f(x)=\begin{cases} -4x-3\phantom{cccccc}\text{if }x<-8\\ -2x+13\phantom{ciccc}\text{if }-8\leq x<3\\ 19\phantom{cccccicccccc}\text{if }-3\leq x<2\\ 2x+15\phantom{ccccicc}\text{if }2\leq x<6\\ 4x+3\phantom{cccicccc}\text{if }x\geq 6 \end{cases}

Evaluating the minimum value of each of the parts of the function

min { f ( x ) } = { 4 ( 8 ) 3 = 29 2 ( 3 ) + 13 = 19 19 2 ( 2 ) + 15 = 19 4 ( 6 ) + 3 = 27 \min\{f(x)\}=\begin{cases} -4(-8)-3=29\\ -2(-3)+13=19\\ 19\\ 2(2)+15=19\\ 4(6)+3=27 \end{cases}

Thus, the minimum of f ( x ) f(x) is 19 \boxed{19}


A graph of f ( x ) f(x)

. .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...