Absolute value 1

Algebra Level 2

Find The number of roots of this equation:- x 2 5 x + 6 + x 1 = 5 \left| { x }^{ 2 }-5x+6 \right| +\left| x-1 \right| =5


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishi Sharma
Jan 21, 2015

x 2 5 x + 6 + x 1 = 5 ( x 3 ) ( x 2 ) + x 1 = 5 S o w e n o w h a v e 4 c a s e s , x 3 , 2 x 3 , 1 x 2 , x 1 S o l v i n g f o r t h e s e d o m a i n s w e g e t t h a t x = 4 a n d x = 3 7 H e n c e o n l y 2 s o l u t i o n s a r e p o s s i b l e . \left| { x }^{ 2 }-5x+6 \right| +\left| x-1 \right| =5\\ \left| (x-3)(x-2) \right| +\left| x-1 \right| =5\\ So\quad we\quad now\quad have\quad 4\quad cases,\\ x\ge 3,\quad 2\ge x\ge 3,\quad 1\ge x\ge 2,\quad x\le 1\\ Solving\quad for\quad these\quad domains\quad we\quad \\ get\quad that\quad x=4\quad and\quad x=3-\sqrt { 7 } \\ Hence\quad only\quad 2\quad solutions\quad are\quad possible.\quad \\

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...