Absolute value and complex number (2)

Algebra Level 3

k = 2 2016 k 2016 i + k = 2 2016 k 2016 i = ? \large \sum_{k=2}^{2016} \left| k^{2016i} \right|+ \left| \prod_{k=2}^{2016} k^{2016i} \right| = ?

Notations :

2016 2 2015 1 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Jul 19, 2016

k 2016 i = e 2016 ( ln k ) i = 1 |k^{2016i}|=|e^{2016(\ln k)i}|=1

So the summation is simply k = 2 2016 ( 1 ) = 2015 \displaystyle\sum_{k=2}^{2016}(1)=2015 .

Now the product is:

k = 2 2016 k 2016 i = ( k = 1 2016 k ) 2016 i = e 2016 ln ( k = 1 2016 k ) i = 1 \left|\prod_{k=2}^{2016}k^{2016i}\right|=\left|\left(\displaystyle\prod_{k=1}^{2016}k\right)^{2016i}\right|=e^{\small{2016\ln\left(\displaystyle\prod_{k=1}^{2016}k\right)i}}=1

Note:- Since e i θ = 1 \large\color{#3D99F6}{\left|e^{i\theta}\right|=1} .

Hence the sum expression is simply 2015 2015 while product expression is 1 1 . Hence answer is 2015 + 1 = 2016 2015+1=\boxed{2016} .

The last 2 summation signs, shouldn't they be product signs instead? It does not change the result.

Julio Bautista - 3 years, 4 months ago

Log in to reply

My bad. Corrected.

Rishabh Jain - 3 years, 3 months ago
Chew-Seong Cheong
Jul 19, 2016

S = k = 2 2016 k 2016 i + k = 2 2016 k 2016 i = k = 2 2016 e 2016 ( ln k ) i + k = 2 2016 e 2016 ( ln k ) i Let θ k = 2016 ( ln k ) = k = 2 2016 cos θ k + i sin θ k + exp ( i k = 2 2016 θ k ) Let k = 2 2016 θ k = Θ = k = 2 2016 1 + e Θ i Note that cos θ k + i sin θ k = 1 = 2015 + cos Θ + i sin Θ = 2015 + 1 = 2016 \begin{aligned} S & = \sum_{k=2}^{2016} \left| k^{2016i} \right| + \left| \prod_{k=2}^{2016} k^{2016i} \right| \\ & = \sum_{k=2}^{2016} \left| e^{\color{#3D99F6}{2016(\ln k)}i} \right| + \left| \prod_{k=2}^{2016} e^{\color{#3D99F6}{2016(\ln k)}i} \right| & \small \color{#3D99F6}{\text{Let }\theta_k = 2016(\ln k)} \\ & = \sum_{k=2}^{2016} \left| \cos \color{#3D99F6}{\theta_k} + i \sin \color{#3D99F6}{\theta_k} \right| + \left| \exp \left( i\sum_{k=2}^{2016} \color{#3D99F6}{\theta_k} \right) \right| & \small \color{#3D99F6}{\text{Let }\sum_{k=2}^{2016} \theta_k = \Theta} \\ & = \sum_{k=2}^{2016} \color{#D61F06}{1} + \left| e^{ \color{#3D99F6}{\Theta}i} \right| & \small \color{#D61F06}{\text{Note that }\left| \cos \theta_k + i \sin \theta_k \right| = 1} \\ & = 2015 + \left| \cos \color{#3D99F6}{\Theta} + i \sin \color{#3D99F6}{\Theta} \right| \\ & = 2015 + 1 \\ & = \boxed{2016} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...