Absolutely Absolute

Algebra Level 3

x 2 5 x + 6 2 x 4 = x 2 3 x + 2 \large \left||x^{2} -5x +6| -|2x-4|\right| = \left|x^{2} -3x+2\right|

What is the maximum value of x x ?


Notation: | \cdot | denotes the absolute value function .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
May 24, 2017

x 2 5 x + 6 2 x 4 = x 2 3 x + 2 ( x 2 ) ( x 3 ) 2 x 2 = ( x 2 ) ( x 1 ) x 3 2 = x 1 \begin{aligned} \left||x^2-5x+6| - |2x-4|\right| & = \left|x^2-3x+2\right| \\ \left||(x-2)(x-3)| - 2|x-2|\right| & = \left|(x-2)(x-1)\right| \\ \left||x-3| - 2\right| & = \left|x-1\right| \end{aligned}

Let us assume that the maximum value of x x satisfying the equation is > 0 > 0 .

For 0 < x 1 0 < x \le 1 , { x 3 2 = 3 x 2 = 1 x x 1 = 1 x \begin{cases} ||x-3|-2| = |3-x-2| = 1-x \\ |x-1| = 1-x \end{cases}

Therefore, L H S = R H S LHS = RHS x ( 0 , 1 ] \implies x \in (0, 1] satisfies the equation.

For 1 < x 3 1 < x \le 3 , { x 3 2 = 3 x 2 = x 1 x 1 = x 1 \begin{cases} ||x-3|-2| = |3-x-2| = x-1 \\ |x-1| = x-1 \end{cases}

Again L H S = R H S LHS = RHS x ( 0 , 3 ] \implies x \in (0, 3] satisfies the equation.

For x > 3 x > 3 , { x 3 2 = x 3 2 = { 5 x if x 5 x 5 if x > 5 x 1 = x 1 \begin{cases} ||x-3|-2| = |x-3-2| = \begin{cases} 5-x & \text{ if }x \le 5 \\ x-5 & \text{ if }x > 5 \end{cases} \\ |x-1| = x -1 \end{cases}

Therefore, L H S R H S LHS \ne RHS for x > 3 x > 3 . And the maximum value of x x satisfying the equation is 3 \boxed{3} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...