4 sin ( 1 0 ° ) + 3 tan ( 1 0 ° )
Find the value of above expression. Give your answer to 3 decimal places.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
4 sin 1 0 ∘ + 3 tan 1 0 ∘ = 4 sin 1 0 ∘ + 2 cos 3 0 ∘ cos 1 0 ∘ sin 1 0 ∘ Since cos 3 0 ∘ = 2 3 = 4 sin 1 0 ∘ + 2 ( 4 cos 3 1 0 ∘ − 3 cos 1 0 ∘ ) cos 1 0 ∘ sin 1 0 ∘ As cos ( 3 θ ) = 4 cos 3 θ − 3 cos θ = 4 sin 1 0 ∘ + 2 sin 1 0 ∘ ( 4 cos 2 1 0 ∘ − 3 ) = 4 sin 1 0 ∘ + 2 sin 1 0 ∘ ( 4 − 4 sin 2 1 0 ∘ − 3 ) = 4 sin 1 0 ∘ + 2 sin 1 0 ∘ ( 1 − 4 sin 2 1 0 ∘ ) = 6 sin 1 0 ∘ − 8 sin 3 1 0 ∘ As sin ( 3 θ ) = 3 sin θ − 4 sin 3 θ = 2 sin 3 0 ∘ = 1
Problem Loading...
Note Loading...
Set Loading...
Here I will use the product to sum formula, then the sum to product formula, also the fact that 2 sin ( 3 0 ∘ ) = 1 and 2 cos ( 3 0 ∘ ) = 3 :
4 sin ( 1 0 ∘ ) + cos ( 1 0 ∘ ) 3 sin ( 1 0 ∘ )
cos ( 1 0 ∘ ) 4 sin ( 1 0 ∘ ) cos ( 1 0 ∘ ) + 3 sin ( 1 0 ∘ )
cos ( 1 0 ∘ ) 2 sin ( 2 0 ∘ ) + 2 sin ( 1 0 ∘ ) cos ( 3 0 ∘ )
cos ( 1 0 ∘ ) 2 sin ( 2 0 ∘ ) + sin ( 4 0 ∘ ) − sin ( 2 0 ∘ )
cos ( 1 0 ∘ ) sin ( 2 0 ∘ ) + sin ( 4 0 ∘ )
cos ( 1 0 ∘ ) 2 sin ( 3 0 ∘ ) cos ( 1 0 ∘ )
1