Chemistry Daily Challenge 24-July-2015

Chemistry Level 2

For a first-order reaction A B A \to B , the temperature ( T ) (T) -dependent rate constant ( k ) (k) was found to follow the equation

log k = ( 2000 ) 1 T + 6. \log k=-(2000)\frac{1}{T}+6.

Which of the following correctly states the respective values of the pre-exponential factor in s 1 \text{s}^{-1} and the activation energy E a E_a in kJ/mol?

To solve this problem, you need to know activation energy .

6 , 16.6 6,\ 16.6 1.0 × 1 0 6 , 9.2 1.0\times 10^6 ,\ 9.2 1.0 × 1 0 1 , 16.6 1.0\times 10^{-1},\ 16.6 1.0 × 1 0 6 , 38.3 1.0\times 10^6 ,\ 38.3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 24, 2015

The k k -rate of a reaction is given by: k = A e E a R T \begin{aligned} k & = Ae^{-\frac{E_a}{RT}} \end{aligned}

It is given that:

log k = 2000 T + 6 k = 1 0 2000 T + 6 = e ln ( 10 ) ( 6 2000 T ) = e 6 ln ( 10 ) e 2000 ln ( 10 ) T \begin{aligned} \log{k} & = -\frac{2000}{T} + 6 \\ \Rightarrow k & = 10^{ -\frac{2000}{T} + 6 } \\ & = e^{ \ln{(10)}(6-\frac{2000}{T})} \\ & = e^{ 6\ln{(10)}}e^{-\frac{2000\ln{(10)}}{T}} \end{aligned}

A = e 6 ln ( 10 ) = 1.0 × 1 0 6 s 1 E a R = 2000 ln ( 10 ) E a = 2000 ln ( 10 ) R 1000 = 2 ln ( 10 ) R = 2 ln ( 10 ) × 8.31446 = 38.3 k J m o l 1 \begin{aligned} \Rightarrow A & = e^{ 6\ln{(10)}} = \boxed{1.0 \times 10^{6}\space s^{-1}} \\ \Rightarrow \dfrac{E_a}{R} & = 2000 \ln{(10)} \\ \Rightarrow E_a & = \dfrac{2000\ln{(10)}R}{1000} = 2\ln{(10)}R \\ & = 2\ln{(10)}\times 8.31446 = \boxed{38.3 \space kJ\space mol^{-1}} \end{aligned}

Moderator note:

Simple standard approach.

Great solution....

Aamir Faisal Ansari - 5 years, 10 months ago

Sir You are leading.......

Aamir Faisal Ansari - 5 years, 10 months ago

The Arrhenius relation between activation energy, temperature and rate constant is given by:

K = A e E a R T K = Ae^{-\frac{E_a}{RT}}

Taking log \log on both sides, (not ln \ln )

log K = log A E a R T log 10 e \log K = \log A - \dfrac{E_a}{RT} \log_{10}e

log K = E a R T 1 2.303 + log A \log K = -\dfrac{E_a}{RT} \dfrac{1}{2.303} + \log A

Comparing terms in the equation given in the question,

E a = 2000 × 2.303 × 8.314 J m o l 1 38.3 K J m o l 1 E_a = 2000 \times 2.303 \times 8.314 J mol^{-1} \approx 38.3 KJ mol^{-1}

A = 1 0 6 s 1 A = 10^6 s^{-1}


Note:

A A is pre-exponential factor.

E a E_a is activation energy.

Nice solution

Aamir Faisal Ansari - 5 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...