Add all the Equations?

Algebra Level 3

{ a 2 + 2 b = 7 b 2 + 4 c = 7 c 2 + 6 a = 14 \large \begin{cases} a^2+2b=7 \\ b^2+4c=-7 \\ c^2+6a=-14\end{cases}

a , b a,b and c c are real numbers that satisfy the system of equations above. What is the value of a 2 + b 2 + c 2 a^2 + b^2 + c^2 ?


The answer is 14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 10, 2016

{ a 2 + 2 b = 7 . . . ( 1 ) b 2 + 4 c = 7 . . . ( 2 ) c 2 + 6 a = 14 . . . ( 3 ) \begin{cases} a^2+2b=7 &...(1) \\ b^2+4c=-7 &...(2) \\ c^2+6a=-14 & ...(3) \end{cases}

( 1 ) + ( 2 ) + ( 3 ) : a 2 + 6 a + b 2 + 2 b + c 2 + 4 c = 14 a 2 + 6 a + 9 + b 2 + 2 b + 1 + c 2 + 4 c + 4 9 1 4 = 14 ( a + 3 ) 2 + ( b + 1 ) 2 + ( c + 2 ) 2 14 = 14 ( a + 3 ) 2 + ( b + 1 ) 2 + ( c + 2 ) 2 = 0 \begin{aligned} (1)+(2)+(3): \quad \quad a^2 + 6a + b^2 + 2b + c^2 + 4c & = - 14 \\ a^2 + 6a \color{#3D99F6}{+ 9} + b^2 + 2b \color{#3D99F6}{+ 1}+ c^2 + 4c\color{#3D99F6}{+ 4} \color{#D61F06}{- 9-1-4} & = - 14 \\ (a+3)^2+(b+1)^2+(c+2)^2 - 14 & = -14 \\ (a+3)^2+(b+1)^2+(c+2)^2 & = 0 \end{aligned}

We note that the LHS are squared terms ( a + 3 ) 2 + ( b + 1 ) 2 + ( c + 2 ) 2 0 (a+3)^2+(b+1)^2+(c+2)^2 \ge 0 and equality only happens when a = 3 a=-3 , b = 1 b=-1 and c = 2 c=-2 . Therefore, a 2 + b 2 + c 2 = 9 + 1 + 4 = 14 a^2+b^2+c^2 = 9+1+4 = \boxed{14} .

i did the same thing!!

Ayush G Rai - 4 years, 8 months ago

Log in to reply

Yes, I noticed. I just wanted to show it more clearly.

Chew-Seong Cheong - 4 years, 8 months ago
Ayush G Rai
Oct 9, 2016

Add all the equations as the topic suggests.We get,
a 2 + b 2 + c 2 + 6 a + 2 b + 4 c + 14 = 0 a^2+b^2+c^2+6a+2b+4c+14=0
Split the 14 14 as 1 + 4 + 9. 1+4+9.
( a 2 + 6 a + 9 ) + ( b 2 + 2 b + 1 ) + ( c 2 + 4 c + 4 ) = 0 ( a + 3 ) 2 + ( b + 1 ) 2 + ( c + 2 ) 2 = 0. (a^2+6a+9)+(b^2+2b+1)+(c^2+4c+4)=0\Rightarrow {(a+3)}^2+{(b+1)}^2+{(c+2)}^2=0.
Since the sum of the squares are equal to 0 , 0, each term should also equal to 0. 0.
( a + 3 ) 2 = 0 a = 3. {(a+3)}^2=0\Rightarrow a=-3.
( b + 1 ) 2 = 0 b = 1. {(b+1)}^2=0\Rightarrow b=-1.
( c + 2 ) 2 = 0 c = 2. {(c+2)}^2=0\Rightarrow c=-2.
Therefore, ( a 2 + b 2 + c 2 ) = 14 . (a^2+b^2+c^2)=\boxed{14}.



You need to mention that a , b , c a, b, c are real. If not there are many complex solutions such that square of them is negative.

Viki Zeta - 4 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...