Add on!

Algebra Level 2

( 1 + 2 + 3 + 4 + + n 1 + 8 + 27 + 64 + + n 3 ) 1 = ? \large \left( \dfrac{1+2+3+4+\cdots+n} {1+8+27+64+\cdots+n^3} \right)^{-1}=\, ?

3n(2n+1) n(n+1)/2 (n+5)(3n^2+3n+1)/(6n) (3n^2+3n+1)/5 n(2n+2)/6

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Zach Abueg
Mar 13, 2017

The sum of the first n \large n natural numbers 1 + 2 + 3 + 4 + . . . + n \large 1 + 2 + 3 + 4 + \ ... \ + n is given by the formula

n ( n + 1 ) 2 \displaystyle \large \frac{n(n + 1)}{2}

The sum of the first n \large n cubes 1 3 + 2 3 + 3 3 + 4 3 + . . . + n 3 \large 1^3 + 2^3 + 3^3 + 4^3 + \ ... \ + n^3 is the square of the sum of the first n natural numbers:

( n ( n + 1 ) 2 ) 2 \displaystyle \large {\bigg(\frac{n(n + 1)}{2}\bigg)}^2

Thus, we can rewrite the expression as

( 1 + 2 + 3 + 4 + + n 1 + 8 + 27 + 64 + + n 3 ) 1 \displaystyle \large \left( \dfrac{1+2+3+4+\cdots+n} {1+8+27+64+\cdots+n^3} \right)^{-1}

= [ n ( n + 1 ) 2 ( n ( n + 1 ) 2 ) 2 ] 1 \displaystyle \large = \Bigg[{\frac{\frac{n(n + 1)}{2}}{\Bigg({\frac{n(n + 1)}{2}\Bigg)}^2}}\Bigg] ^{- 1}

= [ 1 n ( n + 1 ) 2 ] 1 \displaystyle \large = {\Bigg[{\frac {1}{\frac {n(n + 1)}{2}}}\Bigg]}^{- 1}

= n ( n + 1 ) 2 \displaystyle \large = \frac{n(n + 1)}{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...