Summation Thug Life!

Algebra Level 3

1 2 2 2 + 3 2 4 2 + 5 2 + ( 4 n 1 ) 2 ( 4 n ) 2 \large 1^2 - 2^2 + 3^2 - 4^2 + 5^2 - \cdots + (4n-1)^2 - (4n)^2

If the sum above can be expressed in the form of a n 2 + b n + c an^2 + bn + c , where a , b a,b and c c are integer constants, find a + b + c a+b+c .


The answer is -10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Rearranging the expression into groups like this: ( 1 2 2 2 ) + ( 3 2 4 2 ) + ( 5 2 6 2 ) + = ( 3 ) + ( 7 ) + ( 11 ) + (1^2- 2^2) + (3^2 - 4^2) + (5^2- 6^2) + \cdots = (-3) + (-7) + (-11) + \cdots

This expression represents an arithmetic progression with first term a = 3 a= -3 , common difference, d = 4 d= -4 . Since we adjusted 2 terms in one group, no. of terms in this AP have to be taken as 4 n 2 = 2 n \dfrac{4n}2 = 2n .

So, using the arithmetic progression sum formula:

S = N 2 [ 2 a + ( N 1 ) d ] = 2 n 2 [ 2 ( 3 ) + ( 2 n 1 ) ( 4 ) ] = n ( 6 8 n + 4 ) = n ( 8 n 2 ) = 8 n 2 2 n + 0 \begin{aligned} S &=& \dfrac N2 \left [2a + (N-1)d \right ] \\ &=& \dfrac{2n}2 \left [ 2(-3) + (2n-1)(-4) \right ] \\ &=& n(-6 - 8n + 4) \\ &=& n(-8n - 2 ) \\ &=& -8n^2 - 2n + 0 \end{aligned}

Comparing it with a n 2 + b n + c an^2 + bn + c shows that a = 8 , b = 2 , c = 0 a=-8, b=-2, c=0 . Thus our answer is a + b + c = 10 a+b+c=\boxed{-10} .

Arkajyoti, Nice answer

Atanu Ghosh - 5 years, 3 months ago

Log in to reply

Thanx Atanu :)

Arkajyoti Banerjee - 5 years, 3 months ago
Aditya Dhawan
Mar 5, 2016

Moderator note:

Simple standard approach.

Great use of colors :-)

Pulkit Gupta - 5 years, 3 months ago

Log in to reply

I disagree. It is unnecessary and makes the solution harder to read. If the colors were used to highlight certain changes / equations to focus on, then yes it would be a good use of them.

Calvin Lin Staff - 5 years, 3 months ago

Simple colorful approach

Sayan Das - 4 years, 12 months ago
Hong Chung Lee
Jul 2, 2016

The only sol. I understood, thanks alot!

Mohamed Yosry - 4 years, 9 months ago
Arulx Z
Mar 12, 2016

S = 1 2 2 2 + 3 2 4 2 + + ( 4 n 1 ) 2 ( 4 n ) 2 S = 2 2 1 2 + 4 2 3 2 + + ( 4 n ) 2 ( 4 n 1 ) 2 \begin{matrix} S & = & 1^{ 2 } & - & 2^{ 2 } & + & 3^{ 2 } & - & 4^{ 2 } & + & \dots & + & { \left( 4n-1 \right) }^{ 2 } & - & { \left( 4n \right) }^{ 2 } \\ -S & = & 2^{ 2 } & - & 1^{ 2 } & + & 4^{ 2 } & - & 3^{ 2 } & + & \dots & + & { \left( 4n \right) }^{ 2 } & - & { \left( 4n-1 \right) }^{ 2 } \end{matrix}

n 2 ( n 1 ) 2 = ( n n + 1 ) ( n + n 1 ) = n + n 1 = ( n 1 ) + n { n }^{ 2 }-{ \left( n-1 \right) }^{ 2 }=\left( n-n+1 \right) \left( n+n-1 \right) =n+n-1=\left( n-1 \right) +n

S = 1 + 2 + 3 + 4 + + ( 4 n 1 ) + 4 n S = 4 n ( 4 n + 1 ) 2 = 8 n 2 + 2 n S = 8 n 2 2 n -S=1+2+3+4+\dots +\left( 4n-1 \right) +4n\\ -S=\frac { 4n\left( 4n+1 \right) }{ 2 } =8{ n }^{ 2 }+2n\\ S=-8{ n }^{ 2 }-2n

Moderator note:

Please add words to explain what you are doing. Not everyone can be a mindreader.

Lucas Nascimento
Jul 4, 2016

input n=1, then use the formula until n=1 equaling to a+b+c.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...