Addend as a Factor of a Cube

Positive integers a a , b b , and c c , where 0 < a < 100 0 < a < 100 and 0 < b < 100 0 < b < 100 , are such that

a + b a = c 3 \large \frac{a+b}{a} = c^{3}

What is the largest value of a + b + c a+b+c ?


Part 2

114 98 100 106 90

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jul 30, 2020

Given that a + b a = c 3 \dfrac {a+b}a = c^3 , 1 + b a = c 3 \implies 1 + \dfrac ba = c^3 . Since the smallest b a = 1 1 = 1 \dfrac ba = \dfrac 11 = 1 and the largest b a = 99 1 = 99 \dfrac ba = \dfrac {99}1 = 99 , then 2 < c 3 < 100 2 c 4 2 < c^3 < 100 \implies 2 \le c \le 4 .

From 1 + b a = c 3 b = a ( c 3 1 ) 1 + \dfrac ba = c^3 \implies b = a(c^3 -1) . Then a + b + c = a + a ( c 3 1 ) + c = a c 3 + c a+b+c = a + a(c^3 -1) + c = ac^3 + c . This means that for a particular value of c c , the largest a + b + c a+b+c is the one with the largest a a . In formula, we have max ( a + b + c ) = a max c 3 + c \max(a+b+c) = a_{\max} c^3 + c . And a max = 99 c 3 1 a_{\max} = \left \lfloor \dfrac {99}{c^3-1} \right \rfloor , where \lfloor \cdot \rfloor denotes the floor function .

Then we have:

c = 2 a max = 99 2 3 1 = 14 max ( a + b + c ) = 14 ( 8 ) + 2 = 114 0 c = 3 a max = 99 3 3 1 = 3 max ( a + b + c ) = 3 ( 27 ) + 3 = 84 0 c = 4 a max = 99 4 3 1 = 1 max ( a + b + c ) = 1 ( 64 ) + 4 = 68 \begin{array} {lll} c = 2 & \implies a_{\max} = \left \lfloor \dfrac {99}{2^3-1} \right \rfloor = 14 & \implies \max(a+b+c) = 14(8) + 2 = 114 \\ \phantom0 \\ c = 3 & \implies a_{\max} = \left \lfloor \dfrac {99}{3^3-1} \right \rfloor = 3 & \implies \max(a+b+c) = 3(27) + 3 = 84 \\ \phantom0 \\ c = 4 & \implies a_{\max} = \left \lfloor \dfrac {99}{4^3-1} \right \rfloor = 1 & \implies \max(a+b+c) = 1(64) + 4 = 68 \end{array}

Therefore the largest value of a + b + c = 114 a+b+c = \boxed{114} .

Great, systematic deduction! Upvoted!

Mahdi Raza - 10 months, 1 week ago

Log in to reply

Glad that you like it.

Chew-Seong Cheong - 10 months, 1 week ago
Kaizen Cyrus
Jul 30, 2020

The fraction a + b a \frac{a+b}{a} can be rewritten as 1 + b a 1+\frac{b}{a} . Meaning, b a \frac{b}{a} is equal to c 3 1 c^{3} - 1 . The highest possible value for b a \frac{b}{a} if both variables are positive integers less than 100 100 is 99 1 \frac{99}{1} . Thus we must find cubes less than 100 100 and subtract them by 1 1 .

1 3 = 1 0 2 3 = 8 7 3 3 = 27 26 4 3 = 64 63 \begin{array}{lcrrr} 1^{3} & = & 1 & \implies & 0 \\[0.25em] 2^{3} & = & 8 & \implies & 7\\[0.25em] 3^{3} & = & 27 & \implies & 26 \\[0.25em] 4^{3} & = & 64 & \implies & 63 \end{array}

If c 3 1 c^{3} - 1 is 0 0 , the solutions will be 0 n = 0 \frac{0}{n} = 0 (with n n being any number satisfying the mentioned conditions). But b > 0 b > 0 , thus the cube cannot be 1 1 .

We then need to list the divisors and dividends of the quotient c 3 1 c^{3} - 1 .

7 7 1 , 14 2 , 21 3 , , 91 13 , 98 14 27 27 1 , 54 2 , 81 3 63 63 1 \begin{array}{rcl} 7 & \implies & \dfrac71 , \dfrac{14}{2}, \dfrac{21}{3}, \ldots , \dfrac{91}{13}, \dfrac{98}{14} \\[1.25em] 27 & \implies & \dfrac{27}{1}, \dfrac{54}{2}, \dfrac{81}{3} \\[1.25em] 63 & \implies & \dfrac{63}{1} \end{array}

We see that the largest pair of divisor and dividend is 98 14 \frac{98}{14} .

a + b a = c 3 14 + 98 14 = 2 3 a + b + c = 14 + 98 + 2 = 114 \begin{array}{ll} \begin{aligned} \dfrac{a+b}{a} = & \space c^{3} \\[0.5em] \dfrac{14+98}{14} = & \space 2^{3} \end{aligned} & \implies a + b + c = 14 + 98 + 2 = \boxed{114} \end{array}

It's a Nice Problem @Kaizen Cyrus

Mahdi Raza - 10 months, 1 week ago
Pop Wong
Aug 6, 2020

Given a, b, c are positive integers 0 < a , b < 100 0 < a, b < 100 ,

a + b a = c 3 1 + b a = c 3 b = n a \cfrac{a+b}{a} = c^3 \Rightarrow 1+ \cfrac{b}{a} = c^3 \Rightarrow b = na for some postive integer min ( b a ) = 1 n max ( b a ) = 99 ( 1 + n ) a a = c 3 c 3 100 c = 2 , 3 , 4 \min\left( \cfrac{b}{a} \right) = 1 \le n \le \max\left( \cfrac{b}{a} \right) = 99 \\ \cfrac{(1+n)a}{a} = c^3 \Rightarrow c^3 \leq 100 \Rightarrow c = 2, 3, 4

As b = n a < 100 , c [ 2 , 4 ] , c n a b = n a b=na < 100, c \in [2,4], c\downarrow \Rightarrow n\downarrow \Rightarrow a\uparrow \Rightarrow b\uparrow=na ,

To maximize a + b + c a+b+c we choose smallest c

c = 2 , n = 7 , b = n a = 7 a < 100 c = 2, n=7, b=na=7a < 100 \Rightarrow max ( a ) = 14 max ( b ) = 98 max ( a + b + c ) = 14 + 98 + 2 = 114 \begin{aligned} \max(a) &= 14 \\ \max(b) &= 98 \\ \max( a+b+c ) &= 14+98+2 = \boxed{114} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...