Adding arctan

Geometry Level 4

n = 0 arctan ( 1 n 2 + n + 1 ) \large \sum_{n=0}^\infty \text{arctan} \left( \dfrac1{n^2+n+1} \right)

If the value of the summation above is in the form of d a π y \dfrac da \pi ^y , where a , d a,d and y y are positive integers with a , d a,d coprime, find d + a + y d+a+y .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Since arctan ( 1 n 2 + n + 1 ) = arctan ( n + 1 n n ( n + 1 ) + 1 ) = arctan ( n + 1 ) arctan ( n ) \arctan { \left( \frac { 1 }{ { n }^{ 2 }+n+1 } \right) } =\arctan { \left( \frac { n+1-n }{ n\left( n+1 \right) +1 } \right) } =\arctan { \left( n+1 \right) } -\arctan { \left( n \right) } , this is a telescopic sum.

Then, n = 0 m ( arctan ( n + 1 ) arctan ( n + 1 ) ) = arctan ( m + 1 ) \sum _{ n=0 }^{ m }{ \left( \arctan { \left( n+1 \right) } -\arctan { \left( n+1 \right) } \right) } =\arctan { \left( m+1 \right) } and lim m n = 0 m arctan ( 1 n 2 + n + 1 ) = lim m arctan ( m + 1 ) = π 2 \lim _{ m\rightarrow \infty }{ \sum _{ n=0 }^{ m }{ \arctan { \left( \frac { 1 }{ { n }^{ 2 }+n+1 } \right) } } } =\lim _{ m\rightarrow \infty }{ \arctan { \left( m+1 \right) } } =\frac { \pi }{ 2 } . So d + a + y = 1 + 2 + 1 = 4 d+a+y=1+2+1=4

Did the exact same thing

Ραμών Αδάλια - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...