Let
For intergers ,
find the sum of all
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
For y constant, the sum of all f ( x , y ) is ∑ x = 0 ∞ ( 2 x + 2 y 2 x + 3 y ) = 2 ∑ x = 0 ∞ ( 2 x + 2 y 2 x + 3 y ) − ∑ x = 0 ∞ ( 2 x + 2 y 2 x + 3 y ) = ∑ x = 0 ∞ ( 2 x + 2 y − 1 2 x + 3 y ) − ∑ x = 0 ∞ ( 2 x + 2 y 2 x + 3 y ) = 2 2 y − 1 3 y + ∑ x = 1 ∞ ( 2 x + 2 y − 1 2 x + 3 y ) − ∑ x = 0 ∞ ( 2 x + 2 y 2 x + 3 y ) = 2 2 y − 1 3 y + ∑ x = 0 ∞ 2 x + 2 y 2 = 2 2 y − 1 3 y + ∑ x = 0 ∞ 2 x + 2 y − 1 1 = 2 2 y − 1 3 y + ∑ x = 0 ∞ 2 1 − 2 y − x .
Then, note that ∑ n = k ∞ 2 z − n = 2 z + 1 − k .
In this case, z = 1 − 2 y , k = 0 so simplifying 2 2 y − 1 3 y + ∑ x = 0 ∞ 2 1 − 2 y − x = 2 2 y − 1 3 y + 2 2 − 2 y which is the sum of f ( x , y ) for y constant and x ≥ 0
Then the sum of all f ( x , y ) for both y , x ≥ 0 is ∑ y = 0 ∞ ( 2 2 y − 1 3 y + 2 2 − 2 y )
Let S 1 = ∑ y = 0 ∞ 2 2 y − 1 3 y = 0 + 2 3 + 8 6 + 3 2 9 + 6 4 1 2 + . . .
S 2 = ∑ y = 0 ∞ 2 2 − 2 y = 4 + 1 + 4 1 + 1 6 1 + 6 4 1 + . . .
Then,
4 S 1 = 0 + 6 + 2 6 + 8 9 + 3 2 1 2 + . . . 4 S 1 − S 1 = 3 S 1 = 6 + 2 3 + 8 3 + 3 2 3 + . . . S 1 = 2 + 2 1 + 8 1 + 3 2 1 + . . . 4 S 1 = 8 + 2 + 8 1 + . . . 4 S 1 − S 1 = 3 S 1 = 8 S 1 = 3 8
Similarly,
4 S 2 = 1 6 + 4 + 1 + 4 1 + 1 6 1 + . . . 4 S 2 − S 2 = 3 S 2 = 1 6 S 2 = 3 1 6
Finally, S 1 + S 2 = 3 2 4 = 8