Adding unit fractions

Algebra Level 1

1 2 , 1 2 + 1 3 , 1 2 + 1 3 + 1 7 \frac12 , \quad \frac12 + \frac13 ,\quad \frac12 + \frac13 + \frac17 The three numbers above are all less than 1.

What is the smallest positive integer n n such that 1 2 + 1 3 + 1 7 + 1 n \frac12+\frac13 +\frac17 +\frac1n is also less than 1?


The answer is 43.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

David Vreken
Sep 24, 2018

1 2 + 1 3 + 1 7 + 1 n < 1 \frac{1}{2} + \frac{1}{3} + \frac{1}{7} + \frac{1}{n} < 1

41 42 + 1 n < 1 \frac{41}{42} + \frac{1}{n} < 1

1 n < 1 42 \frac{1}{n} < \frac{1}{42}

n > 42 n > 42

The next positive integer such that n > 42 n > 42 is n = 43 n = \boxed{43} .

We require that 1 2 + 1 3 + 1 7 + 1 n < 1 = 1 2 + 1 3 + 1 6 1 7 + 1 n < 1 6 1 n < 1 6 1 7 = 1 42 n > 42 \dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{7} + \dfrac{1}{n} \lt 1 = \dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{6} \Longrightarrow \dfrac{1}{7} + \dfrac{1}{n} \lt \dfrac{1}{6} \Longrightarrow \dfrac{1}{n} \lt \dfrac{1}{6} - \dfrac{1}{7} = \dfrac{1}{42} \Longrightarrow n \gt 42 .

The least positive integer n n is thus 43 \boxed{43} .

Naren Bhandari
Sep 26, 2018

For smallest value we don't need to work much if we observe that 1 2 + 1 2 = 1 1 2 + 1 l.c.m ( 2 , 1 ) + 1 < 1 1 2 + 1 3 + 1 6 = 1 1 2 + 1 3 + 1 l.c.m(2,3) < 1 \begin{aligned} \dfrac{1}{2}+\dfrac{1}{2}& = 1\implies \dfrac{1}{2}+\dfrac{1}{\text{l.c.m}(2,1)+1} <1 \\\dfrac{1}{2} +\dfrac{1}{3} + \dfrac{1}{6}& =1\implies \dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{\text{l.c.m(2,3)}} <1\end{aligned} Therefore, 1 2 + 1 3 + 1 7 = 1 2 + 1 3 + 1 l.c.m ( 2 , 3 ) + 1 < 1 \dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{7} = \dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{\text{l.c.m} (2,3)+1} <1 On the same manner 1 2 + 1 3 + 1 7 + 1 n = 1 2 + 1 3 + 1 7 + 1 l.cm ( 2 , 3 , 7 ) + 1 < 1 \dfrac{1}{2} +\dfrac{1}{3}+\dfrac{1}{7} +\dfrac{1}{n} =\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{7} +\dfrac{1}{\text{l.cm}(2,3,7)+1 }< 1 giving us n = l.cm ( 2 , 3 , 7 ) + 1 = 43 n= \text{l.cm}(2,3,7)+1=43 as the smallest possible value. The next possible value will be l.c.m ( 2 , 3 , 7 , 43 ) + 1 = 1807 \text{l.c.m}\,(2,3,7,43)+1 = 1807 and so on.

Note: l.c.m ( 2 , 3 , 7 , 43 , 1807 ) + 1 = 3263443 \text{l.c.m}(2,3,7,43,1807)+1=3263443 is the prime.

While this pattern is certainly true, can you explain why that's the case? Is it simply a coincidence?

Pi Han Goh - 2 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...