Adding with cousins

For all n 2 n\ge 2 , there are p n { p }_{ n } the prime number less than or equal to n n and q n { q }_{ n } the next prime number larger than n n . For example: n = 3 n=3 , p 3 = 3 { p }_{ 3 }=3 and q 3 = 5 { q }_{ 3 }=5 .

Find the value of

1 p 2 q 2 + 1 p 3 q 3 + 1 p 4 q 4 + 1 p 5 q 5 + 1 p 6 q 6 + 1 p 7 q 7 + 1 p 8 q 8 + 1 p 9 q 9 + 1 p 10 q 10 \frac { 1 }{ { p }_{ 2 }{ q }_{ 2 } } +\frac { 1 }{ { p }_{ 3 }{ q }_{ 3 } } +\frac { 1 }{ { p }_{ 4 }{ q }_{ 4 } } +\frac { 1 }{ { p }_{ 5 }{ q }_{ 5 } } +\frac { 1 }{ { p }_{ 6 }{ q }_{ 6 } } +\frac { 1 }{ { p }_{ 7 }{ q }_{ 7 } } +\frac { 1 }{ { p }_{ 8 }{ q }_{ 8 } } +\frac { 1 }{ { p }_{ 9 }{ q }_{ 9 } } +\frac { 1 }{ { p }_{ 10 }{ q }_{ 10 } }

1 77 \frac 1{77} 9 22 \frac 9{22} 1 2 \frac 12 28 2 3 5 7 11 \frac {28}{2\cdot3\cdot5\cdot7\cdot11} 10 11 \frac {10}{11}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Md Zuhair
Apr 13, 2017

So putting n = 10 n=10 , we get 9 22 \dfrac{9}{22}

How do you get the sum ?

Kushal Bose - 4 years, 1 month ago
Brian Moehring
Aug 22, 2018

Let p ( n ) p(n) denote the n n th prime number. Then p ( 5 ) = 11 , p(5)=11, so k = 2 11 1 1 p k q k = m = 1 5 1 k = p ( m ) p ( m + 1 ) 1 1 p ( m ) p ( m + 1 ) = m = 1 5 1 p ( m + 1 ) p ( m ) p ( m ) p ( m + 1 ) = m = 1 5 1 1 p ( m ) 1 p ( m + 1 ) = 1 p ( 1 ) 1 p ( 5 ) = 1 2 1 11 = 9 22 \begin{aligned} \sum_{k=2}^{11-1} \frac{1}{p_kq_k} &= \sum_{m=1}^{5-1}\quad \sum_{k=p(m)}^{p(m+1)-1} \frac{1}{p(m)p(m+1)} \\ &= \sum_{m=1}^{5-1} \frac{p(m+1)-p(m)}{p(m)p(m+1)} \\ &= \sum_{m=1}^{5-1} \frac{1}{p(m)} - \frac{1}{p(m+1)} \\ &= \frac{1}{p(1)} - \frac{1}{p(5)} \\ &= \frac{1}{2} - \frac{1}{11} \\ &= \boxed{\frac{9}{22}} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...