Addition \leftrightarrow Multiplication

Algebra Level 2

True or False?

If x , y , z x, y, z are real numbers such that x + y + z = x y z x + y + z = xyz and x , y , z ± 1 , x, y, z \neq \pm 1, then we must also have

2 x 1 x 2 + 2 y 1 y 2 + 2 z 1 z 2 = 2 x 1 x 2 × 2 y 1 y 2 × 2 z 1 z 2 \dfrac{2x}{1 - x^2} + \dfrac{2y}{1-y^2} + \dfrac{2z}{1 - z^2} = \dfrac{2x}{1 - x^2} \times \dfrac{2y}{1-y^2} \times \dfrac{2z}{1 - z^2}

for all possible values of x , y , z . x, y, z.

False True

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Steven Yuan
Nov 21, 2017

Let A , B , C A, B, C be real numbers in the range [ 0 , π 2 ) ( π 2 , π ] \left [0, \frac{\pi}{2} \right ) \cup \left (\frac{\pi}{2}, \pi \right] such that

tan A = x tan B = y tan C = z . \begin{aligned} \tan A &= x \\ \tan B &= y \\ \tan C &= z. \end{aligned}

Note that as an angle θ \theta spans the range [ 0 , π 2 ) ( π 2 , π ] \left [0, \frac{\pi}{2} \right ) \cup \left (\frac{\pi}{2}, \pi \right] , tan θ \tan \theta spans the range ( , ) , (-\infty, \infty), which is the set of all real numbers, so this substitution is valid.

The given condition rewrites as tan A + tan B + tan C = tan A tan B tan C . \tan A + \tan B + \tan C = \tan A \tan B \tan C. We shall prove that this indicates that A + B + C = k π , A + B + C = k\pi, where k { 0 , 1 , 2 , 3 } k \in \{0, 1, 2, 3\} . Manipulating the expression yields

tan A + tan B + tan C = tan A tan B tan C tan A + tan B = tan A tan B tan C tan C tan A + tan B = tan C ( 1 tan A tan B ) tan A + tan B 1 tan A tan B = tan C tan ( A + B ) = tan C tan ( A + B ) = tan ( C ) . \begin{aligned} \tan A + \tan B + \tan C &= \tan A \tan B \tan C \\ \tan A + \tan B &= \tan A \tan B \tan C - \tan C \\ \tan A + \tan B &= -\tan C (1 - \tan A \tan B) \\ \dfrac{\tan A + \tan B}{1 - \tan A \tan B} &= -\tan C \\ \tan(A + B) &= -\tan C \\ \tan(A + B) &= \tan(-C). \end{aligned}

Since the period of tangent is π , \pi, we can say that A + B = C + k π A + B = -C + k\pi for some integer k , k, or A + B + C = k π . A + B + C = k\pi. Because A , B , C A, B, C are first and second quadrant angles, the possible values of k k are 0, 1, 2, and 3.

Now, we look at the second expression. By the tangent double angle identity, we have

2 x 1 x 2 = 2 tan A 1 tan 2 A = tan 2 A . \dfrac{2x}{1 - x^2} = \dfrac{2 \tan A}{1 - \tan^2 A} = \tan 2A.

Similarly, 2 y 1 y 2 = tan 2 B \dfrac{2y}{1 - y^2} = \tan 2B and 2 z 1 z 2 = tan 2 C . \dfrac{2z}{1 - z^2} = \tan 2C.

We proved that A + B + C = k π A + B + C = k\pi previously. Isolating for C C yields C = k π ( A + B ) , C = k\pi - (A + B), and multiplying both sides by 2 gives 2 C = 2 k π ( 2 A + 2 B ) . 2C = 2k\pi - (2A + 2B). Taking the tangent of both sides, and applying the tangent angle sum identity and the identity tan ( 2 k π θ ) = tan θ , \tan (2k\pi - \theta) = -\tan \theta, gives us

tan 2 C = tan ( 2 k π ( 2 A + 2 B ) ) tan 2 C = tan ( 2 A + 2 B ) tan 2 C = tan 2 A + tan 2 B 1 tan 2 A tan 2 B tan 2 C ( 1 tan 2 A tan 2 B ) = ( tan 2 A + tan 2 B ) tan 2 A + tan 2 B + tan 2 C = tan 2 A tan 2 B tan 2 C 2 x 1 x 2 + 2 y 1 y 2 + 2 z 1 z 2 = 2 x 1 x 2 × 2 y 1 y 2 × 2 z 1 z 2 , \begin{aligned} \tan 2C &= \tan(2k\pi - (2A + 2B)) \\ \tan 2C &= -\tan(2A + 2B) \\ \tan 2C &= -\dfrac{\tan 2A + \tan 2B}{1 - \tan 2A \tan 2B} \\ \tan 2C(1 - \tan 2A \tan 2B) &= -(\tan 2A + \tan 2B) \\ \tan 2A + \tan 2B + \tan 2C &= \tan 2A \tan 2B \tan 2C \\ \dfrac{2x}{1 - x^2} + \dfrac{2y}{1 - y^2} + \dfrac{2z}{1 - z^2} &= \dfrac{2x}{1 - x^2} \times \dfrac{2y}{1 - y^2} \times \dfrac{2z}{1 - z^2}, \end{aligned}

as desired. \blacksquare

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...