Addition, subtraction, multiplication

Calculus Level 2

Evaluate: x + y x y t y d t \large \int_{x + y}^{x - y} ty \ dt

where x x and y y are independent of t t .

2 x y 2 2xy^2 4 x 2 y -4x^2y 4 x 2 y 4 4x^2y^4 2 x y 2 -2xy^2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ashish Menon
May 30, 2016

x + y x y t y d t = y x + y x y t d t = y × ( t 2 2 ) x + y x y = y × ( ( x y ) 2 2 ( x + y ) 2 2 ) = y × ( x 2 + y 2 2 x y x 2 y 2 2 x y 2 ) = y × 4 x y 2 = 2 x y 2 \begin{aligned} \LARGE \int_{x + y}^{x - y} ty \ dt & = \LARGE y\int_{x + y}^{x - y} t \ dt\\ \\ & = \LARGE y × \left(\dfrac{t^2}{2}\right){\Huge \vert}_{x + y}^{x - y}\\ \\ & = \LARGE y × \left(\dfrac{{(x - y)}^2}{2} - \dfrac{{(x + y)}^2}{2}\right)\\ \\ & = \LARGE y × \left(\dfrac{x^2 + y^2 - 2xy - x^2 - y^2 - 2xy}{2}\right)\\ \\ & = \LARGE y × \dfrac{-4xy}{2}\\ \\ & = \LARGE \color{#69047E}{\boxed{-2xy^2}} \end{aligned}

Nice sol.! Did it the same way +1!

Rishabh Tiwari - 5 years ago

Log in to reply

Thanks :) :)

Ashish Menon - 5 years ago

If you don't want any reports , please mention that y y is a constant

Sabhrant Sachan - 5 years ago

Log in to reply

Did it. Thanks :) :)

Ashish Menon - 5 years ago

@Ashish Siva , it shoul be d t dt instead of d x dx .

Chew-Seong Cheong - 4 years, 10 months ago

Log in to reply

Thanks, I corrected the typo.

Ashish Menon - 4 years, 10 months ago

Relevant wiki: Integration Tricks

I = x + y x y t y d t Using a b f ( x ) d x = a b f ( a + b x ) d x I = 1 2 x + y x y ( t y + ( 2 x t ) y ) d t = x + y x y x y d t = x y t x + y x y = x y ( x y x y ) = 2 x y 2 \begin{aligned} I & = \int_{x+y}^{x-y} ty \ dt & \small \color{#3D99F6}{\text{Using }\int^b_a f(x) \ dx = \int^b_a f(a+b - x) \ dx} \\ \implies I & = \frac 12 \int_{x+y}^{x-y} (ty + (2x-t)y) \ dt \\ & = \int _{x+y}^{x-y} xy \ dt \\ & = xyt \ \bigg|_{x+y}^{x-y} \\ & = xy(x-y-x-y) \\ & = \boxed{-2xy^2} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...