Evaluate: ∫ x + y x − y t y d t
where x and y are independent of t .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Nice sol.! Did it the same way +1!
If you don't want any reports , please mention that y is a constant
@Ashish Siva , it shoul be d t instead of d x .
Relevant wiki: Integration Tricks
I ⟹ I = ∫ x + y x − y t y d t = 2 1 ∫ x + y x − y ( t y + ( 2 x − t ) y ) d t = ∫ x + y x − y x y d t = x y t ∣ ∣ ∣ ∣ x + y x − y = x y ( x − y − x − y ) = − 2 x y 2 Using ∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x
Problem Loading...
Note Loading...
Set Loading...
∫ x + y x − y t y d t = y ∫ x + y x − y t d t = y × ⎝ ⎜ ⎛ 2 t 2 ⎠ ⎟ ⎞ ∣ x + y x − y = y × ⎝ ⎜ ⎜ ⎛ 2 ( x − y ) 2 − 2 ( x + y ) 2 ⎠ ⎟ ⎟ ⎞ = y × ⎝ ⎜ ⎛ 2 x 2 + y 2 − 2 x y − x 2 − y 2 − 2 x y ⎠ ⎟ ⎞ = y × 2 − 4 x y = − 2 x y 2