Adieu 2017

Calculus Level 5

A n A_n is the area under the curve ln ( 1 + e x + e 2 x + + e n x ) \ln(1+e^x+e^{2x}+\cdots+e^{nx}) , x < 0 x<0

( 2 2 2 2 1 × 3 2 3 2 1 × 5 2 5 2 1 × 7 2 7 2 1 × 1 1 2 1 1 2 1 × ) 2017 A 1 × A 2 × A 3 × A 4 × × A 2017 = ? \large \dfrac{\left(\frac{2^2}{2^2-1}\times\frac{3^2}{3^2-1}\times\frac{5^2}{5^2-1}\times\frac{7^2}{7^2-1}\times\frac{11^2}{11^2-1}\times\cdots\right)^{2017}}{A_1\times A_2\times A_3\times A_4\times\cdots\times A_{2017}}=?


The answer is 2018.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Dec 21, 2017

Note that 0 ln ( 1 e m y ) d y = n 1 1 n 0 e m n y d y = n 1 1 m n 2 = ζ ( 2 ) m \int_0^\infty \ln(1 - e^{-my})\,dy \; = \; -\sum_{n \ge 1} \frac{1}{n}\int_0^\infty e^{-mny}\,dy \; = \; -\sum_{n \ge 1} \frac{1}{mn^2} \; = \; -\frac{\zeta(2)}{m} for any m > 0 m > 0 , and hence A n = 0 ln ( 1 + e x + e 2 x + + e n x ) d x = 0 ln ( e ( n + 1 ) x 1 e x 1 ) d x = 0 ln ( 1 e ( n + 1 ) y 1 e y ) d y = 0 ln ( 1 e ( n + 1 ) y ) d y 0 ln ( 1 e y ) d y = ζ ( 2 ) ζ ( 2 ) n + 1 = n n + 1 ζ ( 2 ) \begin{aligned} A_n & = \; \int_{-\infty}^0 \ln(1 + e^x + e^{2x} + \cdots + e^{nx})\,dx \; = \; \int_{-\infty}^0 \ln\left(\frac{e^{(n+1)x}-1}{e^x-1}\right)\,dx \\ & = \; \int_0^\infty \ln\left(\frac{1 - e^{-(n+1)y}}{1 - e^{-y}}\right)\,dy \; = \; \int_0^\infty \ln(1 - e^{-(n+1)y})\,dy - \int_0^\infty \ln(1 - e^{-y})\,dy \\ & = \; \zeta(2) - \frac{\zeta(2)}{n+1} \; = \; \frac{n}{n+1}\zeta(2) \end{aligned} and hence n = 1 2017 A n = ζ ( 2 ) 2017 2018 \prod_{n=1}^{2017} A_n \; = \; \frac{\zeta(2)^{2017}}{2018} Using the Euler identity p ( 1 p 2 ) = ζ ( 2 ) 1 \prod_p \left(1 - p^{-2}\right) \;= \; \zeta(2)^{-1} (and assuming that the numerator in the question is asking for the product over all primes), we deduce that the answer is 2018 \boxed{2018} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...