A n is the area under the curve ln ( 1 + e x + e 2 x + ⋯ + e n x ) , x < 0
A 1 × A 2 × A 3 × A 4 × ⋯ × A 2 0 1 7 ( 2 2 − 1 2 2 × 3 2 − 1 3 2 × 5 2 − 1 5 2 × 7 2 − 1 7 2 × 1 1 2 − 1 1 1 2 × ⋯ ) 2 0 1 7 = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
Note that ∫ 0 ∞ ln ( 1 − e − m y ) d y = − n ≥ 1 ∑ n 1 ∫ 0 ∞ e − m n y d y = − n ≥ 1 ∑ m n 2 1 = − m ζ ( 2 ) for any m > 0 , and hence A n = ∫ − ∞ 0 ln ( 1 + e x + e 2 x + ⋯ + e n x ) d x = ∫ − ∞ 0 ln ( e x − 1 e ( n + 1 ) x − 1 ) d x = ∫ 0 ∞ ln ( 1 − e − y 1 − e − ( n + 1 ) y ) d y = ∫ 0 ∞ ln ( 1 − e − ( n + 1 ) y ) d y − ∫ 0 ∞ ln ( 1 − e − y ) d y = ζ ( 2 ) − n + 1 ζ ( 2 ) = n + 1 n ζ ( 2 ) and hence n = 1 ∏ 2 0 1 7 A n = 2 0 1 8 ζ ( 2 ) 2 0 1 7 Using the Euler identity p ∏ ( 1 − p − 2 ) = ζ ( 2 ) − 1 (and assuming that the numerator in the question is asking for the product over all primes), we deduce that the answer is 2 0 1 8 .