Adiós 2015

Algebra Level pending

Let f : N R f : \mathbb{N} \to \mathbb{R} be a function such that

k = 0 n f ( k ) = 2016 ( n + 1 ) ( n + 2 ) \sum_{k=0}^{n} f(k) = 2016 \frac{(n+1)}{(n+2)}

Find ( f ( 2014 ) ) 1 (f(2014))^{-1} .


The answer is 2015.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Otto Bretscher
Dec 6, 2015

Nice problem!

f ( n ) = k = 0 n f ( k ) k = 0 n 1 f ( k ) = 2016 n + 1 n + 2 2016 n n + 1 = 2016 ( n + 1 ) ( n + 2 ) f(n)=\sum_{k=0}^{n}f(k)-\sum_{k=0}^{n-1}f(k)=2016\frac{n+1}{n+2}-2016\frac{n}{n+1}=\frac{2016}{(n+1)(n+2)} so f ( 2014 ) = 1 2015 f(2014)=\frac{1}{2015} and the reciprocal we seek is 2015 \boxed{2015}

k = 0 2014 f ( k ) = f ( 0 ) + f ( 1 ) + + f ( 2014 ) = 2016 ( 2014 + 1 ) ( 2014 + 2 ) = 2015 \begin{aligned} \sum_{k=0}^{2014} f(k) & = f(0)+f(1)+ \ldots +f(2014)\\ & = 2016\frac{(2014+1)}{(2014+2)}\\ & = 2015 \end{aligned} k = 0 2013 f ( k ) = f ( 0 ) + f ( 1 ) + + f ( 2013 ) = 2016 ( 2013 + 1 ) ( 2013 + 2 ) = 2016 2014 2015 \begin{aligned} \sum_{k=0}^{2013} f(k) & = f(0)+f(1)+ \ldots +f(2013)\\ & = 2016\frac{(2013+1)}{(2013+2)}\\ & = \frac{2016 \cdot 2014}{2015} \end{aligned} f ( 2014 ) = k = 0 2014 f ( k ) k = 0 2013 f ( k ) = 2015 2016 2014 2015 = 2015 ( 2015 + 1 ) ( 2015 1 ) 2015 = 201 5 2 ( 201 5 2 1 2 ) 2015 = 1 2015 \begin{aligned} f(2014) & = \sum_{k=0}^{2014} f(k) - \sum_{k=0}^{2013} f(k)\\ & = 2015 - \frac{2016 \cdot 2014}{2015}\\ & = 2015 - \frac{(2015+1)(2015-1)}{2015}\\ & = \frac{2015^2-(2015^2-1^2)}{2015}\\ & = \frac{1}{2015} \end{aligned}

( f ( 2014 ) ) 1 = ( 1 2015 ) 1 = 2015 (f(2014))^{-1} = (\frac{1}{2015})^{-1} = 2015

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...