Clever Approximation #1

Algebra Level 4

Let there be a natural number N N that satisfies:

N = 1 2 3 4 5 6 99 100 N=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\text{ }\cdots\text{ }\cdot\frac{99}{100}

Add up all the numbers of the true statements from the list below.

1 . N > 1 100 2 . N > 1 16 4 . N > 1 10 8 . N > 1 8 16 . 1 2 3 2 5 2 7 2 9 9 2 < 100 ! 9 \begin{aligned} & \boxed{1}.\quad N>\frac{1}{100} \\ &\boxed{2}.\quad N>\frac{1}{16} \\ &\boxed{4}.\quad N>\frac{1}{10} \\ &\boxed{8}.\quad N>\frac{1}{8} \\ &\boxed{16}.\quad 1^2\cdot3^2\cdot5^2\cdot7^2\cdot\cdots\cdot99^2<\frac{100!}{9} \end{aligned}


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Boi (보이)
Jun 15, 2017

Let P P and Q Q satisfy:

P = 2 3 4 5 6 7 96 97 98 99 100 101 Q = 2 3 4 5 6 7 96 97 98 99 \begin{aligned} &P=\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot\text{ }\cdots\text{ }\cdot\frac{96}{97}\cdot\frac{98}{99}\cdot\frac{100}{101} \\ &Q=\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot\text{ }\cdots\text{ }\cdot\frac{96}{97}\cdot\frac{98}{99} \end{aligned}


Then we can see, from the fact that 1 2 < 2 3 \dfrac{1}{2}<\dfrac{2}{3} , 3 4 < 4 5 \dfrac{3}{4}<\dfrac{4}{5} , \cdots , 99 100 < 100 101 \dfrac{99}{100}<\dfrac{100}{101} ,

N < P N 2 < N P = 1 2 2 3 3 4 100 101 N 2 < 1 101 < 1 100 N < 1 10 \begin{aligned} &N<P \\ &N^2<NP=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\text{ }\cdots\text{ }\cdot\frac{100}{101} \\ &N^2<\frac{1}{101}<\frac{1}{100} \\ &N<\frac{1}{10} \end{aligned}

Therefore, we can rule out 4 \boxed{4} and 8 \boxed{8} .


Also, we can see, from the fact that 2 3 < 3 4 \dfrac{2}{3}<\dfrac{3}{4} , 4 5 < 5 6 \dfrac{4}{5}<\dfrac{5}{6} , \cdots , 98 99 < 99 100 \dfrac{98}{99}<\dfrac{99}{100} ,

1 2 N > Q 1 2 N 2 > N Q = 1 2 2 3 3 4 99 100 N 2 > 1 200 > 1 225 N > 1 15 \begin{aligned} &\frac{1}{2}N>Q \\ &\frac{1}{2}N^2>NQ=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\text{ }\cdots\text{ }\cdot\frac{99}{100} \\ &N^2>\frac{1}{200}>\frac{1}{225} \\ &N>\frac{1}{15} \end{aligned}

Therefore, we can say that 1 \boxed{1} and 2 \boxed{2} are true.


Since N < 1 10 < 1 9 N<\dfrac{1}{10}<\dfrac{1}{9} ,

We can say that 100 ! N < 100 ! 9 100!\cdot N<\dfrac{100!}{9} .

Therefore, 16 \boxed{16} is true.


So, the sum we're trying to get is 1 + 2 + 16 = 19 1+2+16=\boxed{19} .

I think a better way to ask this question, is: Which of the following options is true:
- N < 1 100 N < \frac{1}{100}
- 1 100 < N < 1 16 \frac{ 1}{100} < N < \frac{1}{16}
- ETC


Thoughts? Let me know if I should change the options.

Calvin Lin Staff - 3 years, 11 months ago

Log in to reply

Mmm yeah that'd be better. But you'll have to change the answer too!

Boi (보이) - 3 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...