Advanced Integration

Calculus Level 5

Evaluate

0 sin 4 x x 4 d x . \int_{0}^{\infty} \frac{ \sin^4 x } { x^4 } \, \mathrm dx.

Details and assumptions

You may use the fact that 0 sin 2 x x 2 d x = π 2 \displaystyle \int_0 ^{\infty} \frac{ \sin^2 x } { x^2 } \ \mathrm dx = \frac{ \pi}{2} .


The answer is 1.04719.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

By integration by parts we may obtain

sin 4 x x 4 d x = 1 3 sin 4 x x 3 + 4 3 sin 3 x cos x x 3 d x = 1 3 sin 4 x x 3 2 3 sin 3 x cos x x 2 + 2 3 3 sin 2 x cos 2 x sin 4 x x 2 d x = 1 3 sin 4 x x 3 2 3 sin 3 x cos x x 2 + 2 3 ( sin 2 2 x x 2 sin 2 x x 2 ) d x \displaystyle \begin{aligned} \int \frac{\sin^4 x}{x^4}\, \mathrm{d}x &= -\frac{1}{3} \frac{\sin^4 x}{x^3} + \frac{4}{3} \int \frac{\sin^3 x \cos x}{x^3}\, \mathrm{d}x \\ &= -\frac{1}{3} \frac{\sin^4 x}{x^3} - \frac{2}{3} \frac{\sin^3 x \cos x}{x^2} + \frac{2}{3} \int \frac{3 \sin^2 x \cos^2 x - \sin^4 x}{x^2}\, \mathrm{d}x\\ \displaystyle&= -\frac{1}{3} \frac{\sin^4 x}{x^3} - \frac{2}{3} \frac{\sin^3 x \cos x}{x^2} + \frac{2}{3} \int \left(\frac{\sin^2 2x}{x^2} - \frac{\sin^2 x}{x^2}\right)\, \mathrm{d}x \end{aligned}

Hence,

0 sin 4 x x 4 d x = 2 3 0 sin 2 2 x x 2 d x 2 3 0 sin 2 x x 2 d x = 2 3 0 sin 2 x x 2 d x = π 3 \displaystyle \begin{aligned} \int^\infty_0 \frac{\sin^4 x}{x^4}\, \mathrm{d}x &= \frac{2}{3} \int^\infty_0 \frac{\sin^2 2x}{x^2}\, \mathrm{d}x - \frac{2}{3} \int^\infty_0 \frac{\sin^2 x}{x^2}\, \mathrm{d}x\\ &= \frac{2}{3} \int^\infty_0 \frac{\sin^2 x}{x^2}\, \mathrm{d}x\\&= \frac{\pi}{3} \end{aligned}

Then, the required answer is π 3 1.047 \displaystyle \frac{\pi}{3} \approx \boxed{1.047}

In addition, this is the generalization of 0 ( sin x x ) n d x \displaystyle \int^\infty_0 \left(\frac{\sin x}{x} \right)^n\, \mathrm{d}x

0 ( sin x x ) n d x = lim ϵ 0 + 1 2 + ( sin x x i ϵ ) n d x = lim ϵ 0 + 1 2 + 1 ( x i ϵ ) n ( e i x e i x 2 i ) n d x = lim ϵ 0 + 1 2 1 ( 2 i ) n + 1 ( x i ϵ ) n k = 0 n ( 1 ) k ( n k ) e i x ( n 2 k ) d x = lim ϵ 0 + 1 2 1 ( 2 i ) n k = 0 n ( 1 ) k ( n k ) + e i x ( n 2 k ) ( x i ϵ ) n d x \displaystyle \begin{aligned} \int^\infty_0 \left(\frac{\sin x}{x} \right)^n\, \mathrm{d}x &= \lim_{\epsilon \to 0^+} \frac{1}{2} \int^{+\infty}_{-\infty} \left(\frac{\sin x}{x - i\epsilon}\right)^n\, \mathrm{d}x\\ &= \lim_{\epsilon \to 0^+} \frac{1}{2} \int^{+\infty}_{-\infty} \frac{1}{(x - i\epsilon)^n} \left(\frac{\mathrm{e}^{ix} - \mathrm{e}^{-ix}}{2i}\right)^n\, \mathrm{d}x\\ &= \lim_{\epsilon \to 0^+} \frac{1}{2} \frac{1}{(2i)^n} \int^{+\infty}_{-\infty} \frac{1}{(x - i\epsilon)^n} \sum_{k=0}^n (-1)^k {n \choose k} \mathrm{e}^{ix(n-2k)}\, \mathrm{d}x\\ &= \lim_{\epsilon \to 0^+} \frac{1}{2} \frac{1}{(2i)^n} \sum_{k=0}^n (-1)^k {n \choose k} \int^{+\infty}_{-\infty} \frac{ \mathrm{e}^{ix(n-2k)}}{(x - i\epsilon)^n} \, \mathrm{d}x \end{aligned}

Then, by using Cauchy we obtain

0 ( sin x x ) n d x = 1 2 1 ( 2 i ) n k = 0 n 2 ( 1 ) k ( n k ) 2 π i ( n 1 ) ! d n 1 d x n 1 e i x ( n 2 k ) x = 0 = π 2 n ( n 1 ) ! k = 0 n 2 ( 1 ) k ( n k ) ( n 2 k ) n 1 \displaystyle \begin{aligned} \int^\infty_0 \left(\frac{\sin x}{x} \right)^n\, \mathrm{d}x &= \frac{1}{2} \frac{1}{(2i)^n} \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor}(-1)^k {n \choose k} \frac{2 \pi i}{(n-1)!} \frac{\mathrm{d}^{n-1}} {\mathrm{d}x^{n-1}} \mathrm{e}^{ix(n-2k)} \left. \right|_{x=0}\\ &= \frac{\pi}{2^n(n-1)!} \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^k {n \choose k} (n -2k)^{n-1}\end{aligned}

Putting n = 4 \displaystyle n=4 we have π 3 1.047 \displaystyle \frac{\pi}{3} \approx \boxed{1.047} as the answer.

Nice Solution :)

pebrudal zanu - 7 years, 5 months ago

Log in to reply

Thanks bang!

Fariz Azmi Pratama - 7 years, 5 months ago

By cauchy did you mean residue theorem

Ashar Tafhim - 7 years, 5 months ago

The integral can be found by π 2 × Λ ( x ) Λ ( x ) \frac{\pi}{2}\times\Lambda(x) * \Lambda(x) at x = 0 x = 0 and equals π 3 \frac{\pi}{3} .

Hesam Araghi - 7 years, 4 months ago

Log in to reply

what is A(x)?

Vinay Rane - 7 years, 4 months ago

Log in to reply

Λ ( x ) \Lambda(x) not A(x) and it is triangular function function and * is convolution .

Hesam Araghi - 7 years, 4 months ago

what do you mean by ' using cauchy'?

Shivin Srivastava - 7 years, 5 months ago

hahahaha i still have years of learning

Ayman Elewa - 7 years, 5 months ago

Fantastic!! +1

kushagraa aggarwal - 7 years, 5 months ago

i solved it by first method only :D.... i didn't understand the second one.... but nice effort fariz (Y)

Sherif Elmaghraby - 7 years, 5 months ago

ya good.. my solution for appoximate answer : we can see from graph let assume it's triangle : 1/2(base) (height) = 1/2 (2)*(1) = 1 approx

Sunny Patel - 7 years, 4 months ago

nice........

Shubham Jain - 7 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...