Advanced Math Test #4

Algebra Level 2

Positive real numbers x x and y y are such that x 1 + x + 2 y 1 + y = 1 \dfrac{x}{1+x}+\dfrac{2y}{1+y} = 1 .

Find the maximum value of A = x y 2 A = xy^2 .

If the answer can be expressed in the form of a b \dfrac{a}{b} , where a a and b b are coprime positive integers, type a + b a+b .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Oct 14, 2019

Given that

x 1 + x + 2 y 1 + y = 1 x ( 1 + y ) + 2 y ( 1 + x ) ( 1 + x ) ( 1 + y ) = 1 x + x y + 2 y + 2 x y = 1 + x + y + x y y + 2 x y = 1 x y = 1 2 ( 1 y ) Multiply both sides by y x y 2 = 1 2 ( y y 2 ) = 1 2 ( y 1 2 ) 2 + 1 8 Since ( y 1 2 ) 2 0 A 1 8 \begin{aligned} \frac x{1+x} + \frac {2y}{1+y} & = 1 \\ \frac {x(1+y)+2y(1+x)}{(1+x)(1+y)} & = 1 \\ x + xy + 2y + 2xy & = 1 + x +y+xy \\ y + 2xy & = 1 \\ xy & = \frac 12 (1-y) & \small \blue{\text{Multiply both sides by }y} \\ xy^2 & = \frac 12 \left(y-y^2\right) \\ & = - \frac 12 \left(y-\frac 12\right)^2 + \frac 18 & \small \blue{\text{Since }\left(y-\frac 12\right)^2 \ge 0} \\ \implies A & \le \frac 18 \end{aligned}

Therefore a + b = 1 + 8 = 9 a+b = 1+8 = \boxed 9 .

Mark Hennings
Oct 14, 2019

The constraint can be simplified to read 2 y 1 + y = 1 1 + x 2 ( 1 + x ) y = 1 + y y = 1 1 + 2 x \begin{aligned} \frac{2y}{1+y} & = \; \frac{1}{1+x} \\ 2(1+x)y & = \; 1+y \\ y & = \; \frac{1}{1+2x} \end{aligned} and hence we want to maximize A = x y 2 = x ( 1 + 2 x ) 2 A \; = \; xy^2 \; = \; \frac{x}{(1 +2x)^2} which is maximized when x = 1 2 x=\tfrac12 , with a maximum value of 1 8 \tfrac18 , making the answer 9 \boxed{9} .

A m a x = 1 8 A_{max}=\dfrac{1}{8}

I love your calculations...

Peter van der Linden - 1 year, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...