Advanced Mean Value Theorem - Part 2

Calculus Level 3

Given that f ( x ) f(x) is continuous at [ a , b ] [a,b] , differentiable at ( a , b ) (a,b) , a > 0 a>0 , lim x a f ( x ) x a = 1 \displaystyle \lim_{x \to a} \dfrac{f(x)}{x-a}=1 .

Does there always exist a ξ ( a , b ) \xi \in (a,b) such that f ( ξ ) = b ξ a f ( ξ ) ? f(\xi)=\dfrac{b-\xi}{a} f'(\xi)\ ?

Yes, always Yes, but only sometimes No, never

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let g ( x ) = f ( x ) ( b x ) a {\color{#D61F06}{g\left( x \right)=f\left( x \right){{\left( b-x \right)}^{a}}}} , defined on [ a , b ] \left[ a,\ b \right] .

g g is continuous within the interval [ a , b ] \left[ a,\ b \right] , differentiable within the interval ( a , b ) \left( a,\ b \right) , with
g ( x ) = f ( x ) ( b x ) a + f ( x ) [ ( b x ) a ] = f ( x ) ( b x ) a + f ( x ) [ a ( b x ) a 1 ( b x ) ] = ( b x ) a 1 [ f ( x ) ( b x ) a f ( x ) ] \begin{aligned} {g}'\left( x \right) & ={f}'\left( x \right){{\left( b-x \right)}^{a}}+f\left( x \right){{\left[ {{\left( b-x \right)}^{a}} \right]}^{\prime }} \\ & ={f}'\left( x \right){{\left( b-x \right)}^{a}}+f\left( x \right)\left[ a{{\left( b-x \right)}^{a-1}}{{\left( b-x \right)}^{\prime }} \right] \\ & ={{\left( b-x \right)}^{a-1}}\left[ {f}'\left( x \right)\left( b-x \right)-af\left( x \right) \right] \\ \end{aligned} Let h ( x ) = f ( x ) x a h\left( x \right)=\dfrac{f\left( x \right)}{x-a} , x ( a , b ] x\in \left( a,\ b \right] .
Then,
f ( x ) = ( x a ) h ( x ) lim x a f ( x ) = lim x a [ ( x a ) h ( x ) ] = lim x a ( x a ) lim x a h ( x ) = 0 1 = 0 f\left( x \right)=\left( x-a \right)h\left( x \right)\Rightarrow \underset{x\to a}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to a}{\mathop{\lim }}\,\left[ \left( x-a \right)h\left( x \right) \right]=\underset{x\to a}{\mathop{\lim }}\,\left( x-a \right)\cdot \underset{x\to a}{\mathop{\lim }}\,h\left( x \right)=0\cdot 1=0 Since f f is continuous, f ( a ) = lim x a f ( x ) = 0 f\left( a \right)=\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)=0 . Thus, we have g ( a ) = f ( a ) ( b a ) a = 0 g\left( a \right)=f\left( a \right){{\left( b-a \right)}^{a}}=0 g ( b ) = f ( b ) ( b b ) a = 0 g\left( b \right)=f\left( b \right){{\left( b-b \right)}^{a}}=0 Hence, by Rolle’s theorem , there exists a ξ ( a , b ) \xi\in \left( a,\ b \right) such that
g ( ξ ) = 0 ( b ξ ) a 1 [ f ( ξ ) ( b ξ ) a f ( ξ ) ] = 0 f ( ξ ) = b ξ a f ( ξ ) {g}'\left( \xi \right)=0\Rightarrow {{\left( b-\xi \right)}^{a-1}}\left[ {f}'\left( \xi \right)\left( b-\xi \right)-af\left( \xi \right) \right]=0\Rightarrow f\left( \xi \right)=\frac{b-\xi }{a}{f}'\left( \xi \right)

The answer is Yes, always \boxed{ \text{Yes, always}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...