Advanced Modular Arithmetic #1

Let a a and n n be positive integers that satisfy

  • a a is not divisible by 13 ; 13; .

  • 1 + 1 2 + 1 3 + 1 4 + + 1 22 + 1 23 = a n ! 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+ \cdots +\frac{1}{22}+\frac{1}{23}=\frac{a}{n!} .

Define M M as a maximum value of n n ,

and R R as the remainder of the division a ÷ 13 a\div 13 where n = M 1 n=M-1 .

Find the value of M R M\cdot R .


The answer is 300.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Boi (보이)
Jun 6, 2017

Note that 26 ! , 27 ! , 28 ! , 26!, 27!, 28!, \cdots can be divided by 13 13 twice or more.

.

Simplify the given equation and we get

a = n ! ( 1 + 1 2 + 1 3 + 1 4 + + 1 22 + 1 23 ) a=n!\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+ \cdots +\frac{1}{22}+\frac{1}{23}\right)

Because a a must be an integer, n n must be larger than or equal to 23 23 .

Since n ! k \frac{n!}{k} can be divided by 13 13 given that k 13 k\neq13 ,

a ( m o d 13 ) n ! 13 ( m o d 13 ) a \pmod{13} \equiv \frac{n!}{13} \pmod{13} .

.

If n 26 n\geq26 , as said before, n ! 1 3 2 \frac{n!}{13^2} is a natural number, which makes n ! 13 ( m o d 13 ) 0 ( m o d 13 ) \frac{n!}{13} \pmod{13}\equiv0 \pmod{13} .

Then a ( m o d 13 ) 0 ( m o d 13 ) a \pmod{13}\equiv0\pmod{13} , but this is exactly the opposite of what the question wants.

.

Therefore the maximum of n n is 25 25 . M = 25 \Rightarrow \boxed{M=25} .

.

According to the question, we're trying to get the value of R R when n = M 1 = 24 n=M-1=24 .

a ( m o d 13 ) 24 ! 13 ( m o d 13 ) 1 2 3 4 11 12 ( 13 + 1 ) ( 13 + 2 ) ( 13 + 3 ) ( 13 + 4 ) ( 13 + 10 ) ( 13 + 11 ) ( m o d 13 ) ( 1 2 3 4 5 6 7 8 9 10 11 ) 2 12 ( m o d 13 ) { ( 2 7 ) ( 3 9 ) ( 4 10 ) ( 5 8 ) ( 6 11 ) } 2 12 ( m o d 13 ) { ( 13 + 1 ) ( 2 13 + 1 ) ( 3 13 + 1 ) ( 3 13 + 1 ) ( 5 13 + 1 ) } 2 12 ( m o d 13 ) 12 ( m o d 13 ) \begin{aligned} a \pmod{13} & \equiv \frac{24!}{13} \pmod{13} \\ & \equiv 1\cdot2\cdot3\cdot4\cdots11\cdot12\cdot(13+1)\cdot(13+2)\cdot(13+3)\cdot(13+4)\cdots(13+10)\cdot(13+11) \pmod{13} \\ & \equiv (1\cdot2\cdot3\cdot4\cdot5\cdot6\cdot7\cdot8\cdot9\cdot10\cdot11)^2\cdot12 \pmod{13} \\ & \equiv \{(2\cdot7)\cdot(3\cdot9)\cdot(4\cdot10)\cdot(5\cdot8)\cdot(6\cdot11)\}^2\cdot12 \pmod{13} \\ & \equiv \{(13+1)\cdot(2\cdot13+1)\cdot(3\cdot13+1)\cdot(3\cdot13+1)\cdot(5\cdot13+1)\}^2\cdot12 \pmod{13} \\ & \equiv 12 \pmod{13} \end{aligned}

R = 12 \therefore \boxed{R=12}

.

M R = 300 \therefore \boxed{M\cdot R=300}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...