Advanced Vectors - Part 1

Geometry Level 3

Vector O A , O B , O C \overrightarrow{OA},\ \overrightarrow{OB},\ \overrightarrow{OC} are on the same plane, O A = 1 , O B = 1 , O C = 2 |\overrightarrow{OA}|=1,\ |\overrightarrow{OB}|=1,\ |\overrightarrow{OC}|=\sqrt{2} , the relative position is shown above in the picture.

t a n ( < O A , O C > ) = 7 , < O B , O C > = π 4 tan(<\overrightarrow{OA},\overrightarrow{OC}>)=7,\ <\overrightarrow{OB},\overrightarrow{OC}>\ =\dfrac{\pi}{4} .

If O C = m O A + n O B , ( m , n R ) \overrightarrow{OC}=m\overrightarrow{OA}+n\overrightarrow{OB},\ (m,n \in \mathbb R) , Find m + n m+n .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

tan α = 7 sin α = 7 5 2 , cos α = 1 5 2 \tan α=7\implies \sin α=\dfrac{7}{5\sqrt 2}, \cos α=\dfrac{1}{5\sqrt 2}

The given conditions imply that

2 sin ( 3 π 4 α ) = m sin π 4 = n sin α \dfrac{\sqrt 2 }{\sin (\frac{3π}{4}-α)}=\dfrac{m}{\sin \frac{π}{4}}=\dfrac{n}{\sin α}\implies

m = 5 4 , n = 7 4 m + n = 3 m=\dfrac{5}{4}, n=\dfrac{7}{4}\implies m+n=\boxed 3 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...