Advanced Vectors - Part 2

Geometry Level 4

O , A , B 1 , B 2 , P O,A,B_1,B_2,P are points on the same plane, A B 1 A B 2 , O B 1 = O B 2 = 1 , A P = A B 1 + A B 2 \overrightarrow{AB_1} \perp \overrightarrow{AB_2},\ |\overrightarrow{OB_1}|=|\overrightarrow{OB_2}|=1,\ \overrightarrow{AP}=\overrightarrow{AB_1}+\overrightarrow{AB_2} .

If O P < 1 3 |\overrightarrow{OP}|<\dfrac{1}{3} , Find the range of O A |\overrightarrow{OA}| .

The range can be expressed as ( a , b ] (a,b] . Submit 1000 ( a + b ) \lfloor 1000(a+b) \rfloor .


The answer is 2788.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Nick Kent
Aug 6, 2019

Let's take an analytical approach:

Let point O = ( 0 , 0 ) \left( 0,0 \right) and P = ( 0 , r ) \left( 0,r \right) , where 0 r < 1 3 0\le r<\frac { 1 }{ 3 } . Since O B 1 = 1 O{ B }_{ 1 }=1 , let's introduce an value α \alpha such as B 1 = ( cos α , sin α ) { B }_{ 1 }=\left( \cos { \alpha } , \sin { \alpha } \right) .

Now we can derive other points step-by-step:

O P = ( r , 0 ) , O B 1 = ( cos α , sin α ) P B 1 = O B 1 O P = ( cos α r , sin α ) \overrightarrow { OP } =\left( r,0 \right) ,\overrightarrow { O{ B }_{ 1 } } =\left( \cos { \alpha } ,\sin { \alpha } \right) \\ \overrightarrow { P{ B }_{ 1 } } =\overrightarrow { O{ B }_{ 1 } } -\overrightarrow { OP } =\left( \cos { \alpha } -r,\sin { \alpha } \right)

Since A B 1 A B 2 , A P = A B 1 + A B 2 \overrightarrow { A{ B }_{ 1 } } \bot \overrightarrow { A{ B }_{ 2 } } ,\overrightarrow { AP } =\overrightarrow { A{ B }_{ 1 } } +\overrightarrow { A{ B }_{ 2 } } , points A , B 1 , B 2 , P A,{ B }_{ 1 },{ B }_{ 2 },P form a rectangle. That means P B 1 P B 2 \overrightarrow { P{ B }_{ 1 } } \bot \overrightarrow { P{ B }_{ 2 } } . Knowing that we can conclude:

P B 2 = ( k sin α , k ( cos α r ) ) \overrightarrow { P{ B }_{ 2 } } =\left( -k\cdot \sin { \alpha } ,k\cdot \left( \cos { \alpha } -r \right) \right) , where k k is unknown real number.

To find k k we need to derive O B 2 \overrightarrow { O{ B }_{ 2 } } :

O B 2 = O P + P B 2 = ( r k sin α , k cos α k r ) \overrightarrow { O{ B }_{ 2 } } =\overrightarrow { OP } +\overrightarrow { P{ B }_{ 2 } } =\left( r-k\cdot \sin { \alpha } ,k\cdot \cos { \alpha } -k\cdot r \right)

Since O B 2 = 1 \left| \overrightarrow { O{ B }_{ 2 } } \right| =1 :

( r k sin α ) 2 + ( k cos α k r ) 2 = 1 r 2 2 sin α k r + sin 2 α k 2 + cos 2 α k 2 2 cos α k 2 r + k 2 r 2 = 1 k 2 2 cos α k 2 r + k 2 r 2 2 sin α k r = 1 r 2 k 2 ( 1 2 cos α r + r 2 ) 2 sin α k r = 1 r 2 { \left( r-k\cdot \sin { \alpha } \right) }^{ 2 }+{ \left( k\cdot \cos { \alpha } -k\cdot r \right) }^{ 2 }=1\\ { r }^{ 2 }-2\sin { \alpha } \cdot k\cdot r+{ \sin }^{ 2 }{ \alpha }\cdot { k }^{ 2 }+{ \cos }^{ 2 }{ \alpha }\cdot { k }^{ 2 }-2\cos { \alpha } \cdot { k }^{ 2 }\cdot r+{ k }^{ 2 }\cdot { r }^{ 2 }=1\\ { k }^{ 2 }-2\cos { \alpha } \cdot { k }^{ 2 }\cdot r+{ k }^{ 2 }\cdot { r }^{ 2 }-2\sin { \alpha } \cdot k\cdot r=1-{ r }^{ 2 }\\ { k }^{ 2 }\cdot \left( 1-2\cos { \alpha } \cdot r+{ r }^{ 2 } \right) -2\sin { \alpha } \cdot k\cdot r=1-{ r }^{ 2 }

Let's stop right there and proceed with deriving the point A A . Since A B 1 P B 2 A{ B }_{ 1 }P{ B }_{ 2 } is a rectangle:

O A = O B 2 + B 2 A = O B 2 + P B 1 = ( cos α sin α k , sin α + cos α k k r ) \overrightarrow { OA } =\overrightarrow { O{ B }_{ 2 } } +\overrightarrow { { B }_{ 2 }A } =\overrightarrow { O{ B }_{ 2 } } +\overrightarrow { P{ B }_{ 1 } } =\left( \cos { \alpha } -\sin { \alpha } \cdot k,\sin { \alpha } +\cos { \alpha } \cdot k-k\cdot r \right)

Finally we can find O A \left| \overrightarrow { OA } \right| :

O A 2 = ( cos α sin α k ) 2 + ( sin α + cos α k k r ) 2 O A 2 = cos 2 α 2 cos α sin α k + sin 2 α k 2 + sin 2 α + cos 2 α k 2 + k 2 r 2 + 2 cos α sin α k 2 cos α k r 2 cos α k 2 r O A 2 = 1 + k 2 + k 2 r 2 2 cos α k r 2 cos α k 2 r O A 2 = 1 + k 2 ( 1 2 cos α r + r 2 ) 2 sin α k r { \left| \overrightarrow { OA } \right| }^{ 2 }={ \left( \cos { \alpha } -\sin { \alpha } \cdot k \right) }^{ 2 }+{ \left( \sin { \alpha } +\cos { \alpha } \cdot k-k\cdot r \right) }^{ 2 }\\ { \left| \overrightarrow { OA } \right| }^{ 2 }={ \cos }^{ 2 }{ \alpha }-2\cos { \alpha } \sin { \alpha } \cdot k+{ \sin }^{ 2 }{ \alpha }\cdot { k }^{ 2 }+{ \sin }^{ 2 }{ \alpha }+{ \cos }^{ 2 }{ \alpha }\cdot { k }^{ 2 }+{ k }^{ 2 }\cdot { r }^{ 2 }+2\cos { \alpha } \sin { \alpha } \cdot k-2\cos { \alpha } \cdot k\cdot r-2\cos { \alpha } \cdot { k }^{ 2 }\cdot r\\ { \left| \overrightarrow { OA } \right| }^{ 2 }=1+{ k }^{ 2 }+{ k }^{ 2 }\cdot { r }^{ 2 }-2\cos { \alpha } \cdot k\cdot r-2\cos { \alpha } \cdot { k }^{ 2 }\cdot r\\ { \left| \overrightarrow { OA } \right| }^{ 2 }=1+{ k }^{ 2 }\cdot \left( 1-2\cos { \alpha } \cdot r+{ r }^{ 2 } \right) -2\sin { \alpha } \cdot k\cdot r

Using the relation we found earlier:

O A 2 = 1 + 1 r 2 = 2 r 2 { \left| \overrightarrow { OA } \right| }^{ 2 }=1+1-{ r }^{ 2 }=2-{ r }^{ 2 }

O A = 2 r 2 { \left| \overrightarrow { OA } \right| }=\sqrt { 2-{ r }^{ 2 } } . Note that the distance doesn't depend on the value of α \alpha .

That means that:

a = min O A = 2 ( 1 3 ) 2 = 17 9 = 17 3 , r 1 3 b = max O A = 2 0 2 = 2 , r = 0 a=\min { { \left| \overrightarrow { OA } \right| } } =\sqrt { 2-{ \left( \frac { 1 }{ 3 } \right) }^{ 2 } } =\sqrt { \frac { 17 }{ 9 } } =\frac { \sqrt { 17 } }{ 3 } ,\quad r\rightarrow \frac { 1 }{ 3 } \\ b=\max { { \left| \overrightarrow { OA } \right| } } =\sqrt { 2-{ 0 }^{ 2 } } =\sqrt { 2 } ,\quad r=0

So the answer is 1000 ( a + b ) = 2788 \left\lfloor 1000\left( a+b \right) \right\rfloor = \boxed { 2788 }

Nice approach! Only one problem, the min value of OA is actually 17 3 \frac{\sqrt{17}}{3} . You got the right expression, but there’s a minor error in calculation. Apart from it, your solution is exactly right and elegant.

Alice Smith - 1 year, 10 months ago

Log in to reply

Oops, yes, indeed. I'll edit it out.)

Nick Kent - 1 year, 10 months ago

Log in to reply

And don’t forget to change the final answer:)

Alice Smith - 1 year, 10 months ago

The final answer is 2788.

Alice Smith - 1 year, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...