Adventitious Quadrangle 6

Geometry Level 3

What is the measure of angle x x in degrees?

Bonus: Solve it without trigonometry.


The answer is 70.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Aug 17, 2019

Label the figure as above, where D E = h 1 DE = h_1 and A F = h 2 AF = h_2 are perpendicular to B C = 1 BC=1 , and D G DG is parallel to B C BC . Then we have:

h 1 cot 1 0 + h 1 cot 2 0 = 1 h_1\cot 10^\circ + h_1 \cot 20^\circ = 1

h 1 = tan 1 0 tan 2 0 tan 1 0 + tan 2 0 = sin 1 0 sin 2 0 sin 1 0 cos 2 0 + sin 2 0 cos 1 0 = sin 1 0 sin 2 0 sin 3 0 = 2 sin 1 0 sin 2 0 \begin{aligned} \implies h_1 & = \frac {\tan 10^\circ \tan 20^\circ}{\tan 10^\circ + \tan 20^\circ} = \frac {\sin 10^\circ \sin 20^\circ}{\sin 10^\circ \cos 20^\circ + \sin 20^\circ \cos 10^\circ} = \frac {\sin 10^\circ \sin 20^\circ}{\sin 30^\circ} = 2 \sin 10^\circ \sin 20^\circ \end{aligned}

Similarly, h 2 cot 2 0 + h 2 cot 6 0 = 1 h_2\cot 20^\circ + h_2 \cot 60^\circ = 1 , h 2 = sin 2 0 sin 6 0 sin 8 0 = 2 sin 1 0 cos 1 0 sin 6 0 cos 1 0 = 3 sin 1 0 \implies h_2 = \dfrac {\sin 20^\circ \sin 60^\circ}{\sin 80^\circ} = \dfrac {2\sin 10^\circ \cos 10^\circ \sin 60^\circ}{\cos 10^\circ} = \sqrt 3 \sin 10^\circ

Then we note:

tan A D G = A G D G tan ( x 2 0 ) = h 2 h 1 h 1 cot 2 0 h 2 cot 6 0 = 3 sin 1 0 2 sin 1 0 sin 2 0 2 sin 1 0 cos 2 0 sin 1 0 = 3 2 sin 2 0 2 cos 2 0 1 Divide up and down by 2 = 3 2 sin 2 0 cos 2 0 1 2 = cos 3 0 cos 7 0 cos 2 0 cos 6 0 = 2 sin 2 0 sin 5 0 2 sin 2 0 sin 4 0 = sin 5 0 cos 5 0 = tan 5 0 x = 70 \begin{aligned} \tan \angle ADG & = \frac {AG}{DG} \\ \tan (x - 20^\circ) & = \frac {h_2-h_1}{h_1 \cot 20^\circ - h_2\cot 60^\circ} \\ & = \frac {\sqrt 3 \sin 10^\circ - 2\sin 10^\circ \sin 20^\circ}{2\sin 10^\circ \cos 20^\circ - \sin 10^\circ} \\ & = \frac {\sqrt 3 - 2\sin 20^\circ}{2\cos 20^\circ - 1} & \small \color{#3D99F6} \text{Divide up and down by }2 \\ & = \frac {\frac {\sqrt 3} 2 - \sin 20^\circ}{\cos 20^\circ - \frac 12} \\ & = \frac {\cos 30^\circ - \cos 70^\circ}{\cos 20^\circ - \cos 60^\circ} \\ & = \frac {2 \sin 20^\circ \sin 50^\circ}{2 \sin 20^\circ \sin 40^\circ} = \frac {\sin 50^\circ}{\cos 50^\circ} = \tan 50^\circ \\ \implies x & = \boxed{70}^\circ \end{aligned}

Hosam Hajjir
Aug 20, 2019

For the triangle above, we have:

B C D = ( 140 x ) \angle BCD = (140 - x)^{\circ} and D A B = ( x 40 ) \angle DAB = (x - 40)^{\circ}

In addition, we have

D C D A D A D B D B D C = 1 \dfrac{DC}{DA} \dfrac{DA}{DB} \dfrac{DB}{DC} = 1

Now, applying the law of Sines, to triangles D C A \triangle DCA , D A B \triangle DAB , and D B C \triangle DBC , in this order, the above equation becomes,

sin 1 0 sin ( x 40 ) sin 2 0 sin 1 0 sin ( 140 x ) sin 4 0 = 1 \dfrac{\sin 10^{\circ}}{\sin (x - 40)^{\circ}} \dfrac{\sin 20^{\circ}}{\sin 10^{\circ}} \dfrac{\sin (140-x)^{\circ}}{\sin 40^{\circ}} = 1

which reduces to,

sin 2 0 sin ( 140 x ) = sin ( x 40 ) sin 4 0 \sin 20^{\circ} \sin (140-x)^{\circ} = \sin (x - 40)^{\circ} \sin 40^{\circ}

Using the identity sin ( A ± B ) = sin A cos B ± cos A sin B \sin(A \pm B) = \sin A \cos B \pm \cos A \sin B , results in

sin 2 0 ( sin 14 0 cos x cos 14 0 sin x ) = sin 4 0 ( sin x cos 4 0 cos x sin 4 0 ) \sin 20^{\circ} ( \sin 140^{\circ} \cos x^{\circ} - \cos 140^{\circ} \sin x^{\circ} ) = \sin 40^{\circ} (\sin x^{\circ} \cos 40^{\circ} - \cos x^{\circ} \sin 40^{\circ} )

Dividing through by cos x \cos x^{\circ} and re-arranging, we obtain,

tan x = sin 2 0 sin 14 0 + sin 2 4 0 sin 4 0 cos 4 0 + sin 2 0 cos 14 0 \tan x^{\circ} = \dfrac{ \sin 20^{\circ} \sin 140^{\circ} + \sin^2 40^{\circ} } { \sin 40^{\circ} \cos 40^{\circ} + \sin 20^{\circ} \cos 140^{\circ} }

Using a scientific calculator, we can now find tan x \tan x^{\circ} , and then using the tan 1 \tan^{-1} function we can find x x^{\circ} . The answer comes to 7 0 \boxed{ 70^{\circ} }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...