Aeronautics Technological Institute

Geometry Level pending

The dimensions x x , y y and z z of a parallelepiped rectangle are in an arithmetic progressions . Knowing that the sum of the measures is equal to 33 cm 33 \text{ cm} and that the total area of the parallelepiped is equal to 694 cm 2 694 \text{ cm}^{2} , the volume of this parallelepiped is equals to:

936 c m 3 936cm^{3} 900 3 c m 3 900\sqrt { 3 } cm^{3} 728 c m 3 728cm^{3} 1200 c m 3 1200cm^{3} 1155 c m 3 1155cm^{3}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Victor Augusto
Jan 4, 2016

The question says that x x , y y and z z are in Arithmetic Progression. Now, that’s a tricky question if we don’t realise at first the right way to put those letters in AP. We have to name a new letter, like “ w w ” for example, and represent the AP from ( x x , y y , z z ) to ( w d w - d , w w , w + d w + d ), where " d d " is the common difference . Then, it should be easy to find w w . Since their sum is equal to 33 33 , we can now use the sum formula for AP:

S n = n 2 ( a 1 + a n ) { S }_{ n }\quad =\quad \frac { n }{ 2 } \left( { a }_{ 1 }\quad+\quad { a }_{ n } \right)

S n = 33 { S }_{ n }\quad =\quad 33

33 = 3 2 ( w d + w + d ) 33\quad =\quad \frac { 3 }{ 2 } \left( w-d\quad +\quad w+d \right)

33 = 3 2 w 2 33\quad =\quad \frac { 3\cdot 2w }{ 2 }

33 = 3 w 33\quad =\quad 3w

Then we get:

w = 11 w=11

Replacing the result in our AP we get: ( 11 d 11 - d , 11 11 , 11 + d 11 + d )

Where x = 11 d x = 11 - d , y = 11 y = 11 and z = 11 + d z = 11 + d

“...the total area of the parallelepiped is equal to 694 c m 2 694cm^{2} ”. We have to apply the total area formula using the new expressions showed above:

S t = 2 ( a b + a c + b c ) { S }_{ t }\quad =\quad 2\left( ab\quad +\quad ac\quad +\quad bc \right)

S t = 694 { S }_{ t }\quad =\quad 694

694 = 2 [ ( 11 d ) 11 + ( 11 d ) ( 11 + d ) + 11 ( 11 + d ) ] 694\quad =\quad 2\left[ \left( 11-d \right) \cdot 11\quad +\quad \left( 11-d \right) \cdot \left( 11+d \right) \quad +\quad 11\cdot \left( 11+d \right) \right]

694 = 2 [ 121 11 d + 121 d 2 + 121 + 11 d ] 694\quad =\quad 2\left[ 121-11d\quad +\quad 121-{ d }^{ 2 }\quad +\quad 121+11d \right] --->divide both sides by 2

347 = 121 11 d + 121 d 2 + 121 + 11 d 347\quad =\quad 121-11d\quad +\quad 121-{ d }^{ 2 }\quad +\quad 121+11d

347 = 363 d 2 347\quad =\quad 363-{ d }^{ 2 }

d 2 = 16 { d }^{ 2 }\quad =\quad 16

Then we find that d = 4 d=4

Replacing on the expressions we get:

x = 11 4 x = 11-4 \rightarrow x = 7 x = 7 ;

y = 11 y = 11 ;

z = 11 + 4 z = 11+4 \rightarrow z = 15 z = 15

And so, we just have to use the volume formula for the parallelepiped rectangle:

V = a b c V\quad =\quad a\cdot b\cdot c

V = 7 11 15 V\quad =\quad 7\cdot 11\cdot 15

V = 1155 c m 3 \boxed{V = 1155cm^{3}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...