Affine transformations and letter frequencies

Number Theory Level pending

Let A 0 , B 1 , , Z 25 A \rightarrow 0, B \rightarrow 1, \ldots , Z \rightarrow 25 .

The most common letters in the English alphabet are E E and T T .
The most common letters in a long ciphertext , enciphered by an affine transformation a P + b C ( m o d 26 ) a * P + b \equiv C \pmod{26} are M M and X X , respectively.
We guess that M M and X X correspond to the two most common letters in the English alphabet E E and T T .

a P + b C m o d 26 P a ˉ ( C b ) a * P + b \equiv C \bmod{26} \implies P \equiv \bar{a} * (C - b) , where a ˉ \bar{a} is the inverse of a a modulo 26.

Find ( a ˉ + b ) m o d 26 ( \bar{a} + b) \bmod{26} .


The answer is 15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Jan 15, 2017

4 a + b 12 m o d 26 4 * a + b \equiv 12 \mod{26} 19 a + b 23 m o d 26 19 * a + b \equiv 23 \mod 26

Solving the system we obtain:

15 a 11 m o d 26 15 * a \equiv 11 \mod{26}

Using a repeated application of the Euclidean algorithm you can verify that 7 7 is an inverse of 15 15 modulo 26 26 \implies a 77 m o d 26 25 m o d 26 b 88 m o d 26 10 m o d 26 16 m o d 26. a \equiv 77 \mod 26 \equiv 25 \mod{26} \implies b \equiv -88 \mod{26} \equiv -10 \mod{26} \equiv 16 \mod{26}.

25 P + 16 C m o d 26 25 P ( C 16 ) m o d 26 \implies 25 * P + 16 \equiv C \mod{26} \implies 25 * P \equiv (C - 16) \mod{26} . For 25 a ˉ 1 m o d 26 a ˉ 1 m o d 26 25 m o d 26 , 25 * \bar{a} \equiv 1 \mod{26} \implies \bar{a} \equiv -1 \mod{26} \equiv 25 \mod{26}, so 25 25 is an inverse of 25 25 modulo 26 26 \implies P 25 ( C 16 ) m o d 26. P \equiv 25 * (C - 16) \mod{26}.

a ˉ + b = 41 15 m o d 26 . \therefore \boxed{\bar{a} + b = 41 \equiv 15 \mod{26}}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...