After a moment of silence

Algebra Level 3

x , y , z [ 1 ; 3 ] x, y, z \in [1; 3] are three numbers such that x + y + z = 6 x + y + z = 6 . The minimum value of f ( x , y , z ) = x 3 + y 2 + z 3 x + 2 y + z f(x, y, z) = \dfrac{x^3 + y^2 + z}{3x + 2y + z} is

1 3 ( b + c d i e 1 3 + f 1 + e 2 b + c d i e 1 3 ) 2 + 2 3 ( b + c d i e 1 3 + f 1 + e 2 b + c d i e 1 3 ) + f 2 \large \frac{1}{3}\left(\sqrt[3]{\frac{b + c\sqrt{d}i}{e_1}} + f_1 + \frac{e_2}{\sqrt[3]{\frac{b + c\sqrt{d}i}{e_1}}}\right)^2 + \frac{2}{3}\left(\sqrt[3]{\frac{b + c\sqrt{d}i}{e_1}} + f_1 + \frac{e_2}{\sqrt[3]{\frac{b + c\sqrt{d}i}{e_1}}}\right) + f_2

Calculate the value of e 1 e 2 ( b + c d 2 ) + f 1 + f 2 e_1e_2(b + cd^2) + f_1 + f_2 .


Notation:

  • i i denotes the imaginary unit .
  • d d is square-free and gcd ( b , e 1 ) = gcd ( c , e 1 ) = gcd ( b , e 2 ) = gcd ( c , e 2 ) = 1 \gcd(b, e_1) = \gcd(c, e_1) = \gcd(b, e_2) = \gcd(c, e_2) = 1 .


The answer is 72327073292.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

0 solutions

No explanations have been posted yet. Check back later!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...