Again An Exponent?

Algebra Level 2

If 3 x + 2 y = 985 3^x + 2^y = 985 and 3 x 2 y = 473 3^x - 2^y = 473 . Find the value of x y + 100 xy+100 .


The answer is 148.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Munem Shahriar
Jul 28, 2018

{ 3 x + 2 y = 985 . . . . . . . . ( 1 ) 3 x 2 y = 473 . . . . . . . ( 2 ) \large \begin{cases} 3^x + 2^y & = 985~~~ ........(1) \\ 3^x - 2^y & = 473 ~~~.......(2) \\ \end{cases}

( 1 ) ( 2 ) : (1) - (2):

3 x + 2 y 3 x + 2 y = 985 473 2 ( 2 y ) = 512 2 y = 256 2 y = 2 8 y = 8. \begin{aligned} 3^x + 2^y - 3^x + 2^y & = 985 - 473 \\ \Rightarrow 2(2^y) & = 512 \\ \Rightarrow 2^y & = 256 \\ \Rightarrow 2^y & = 2^8 \\ \implies y & = 8. \\ \end{aligned}

Now substituting y = 8 y = 8 in ( 1 ) : (1):

3 x + 2 8 = 985 3 x = 985 256 3 x = 729 3 x = 3 6 x = 6. \begin{aligned} 3^x + 2^8 & = 985 \\ \Rightarrow 3^x & = 985 - 256 \\ \Rightarrow 3^x & = 729 \\ \Rightarrow 3^x & = 3^6\\ \implies x & = 6. \\ \end{aligned}

Hence x y + 100 = ( 8 ) ( 6 ) + 100 = 148 . xy + 100 = (8)(6) + 100 = \boxed{148}.

Md Zuhair
Aug 4, 2016

Let first one be equation i and second be eq ii. Adding i and ii .... we get x = 6 x = 6 and subtracting i and ii we get y = 8 y = 8 ... Now x y = 48 xy = 48 so x y + 100 = 148 xy+100 = 148 .. and thats the ans

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...