Not Double Factorial

Algebra Level 3

1 1 × 3 + 2 1 × 3 × 5 + 3 1 × 3 × 5 × 7 + 4 1 × 3 × 5 × 7 × 9 + \frac { 1 }{ 1 \times 3 } +\frac { 2 }{ 1 \times 3 \times 5 } +\frac { 3 }{ 1 \times 3 \times 5 \times 7 } + \frac { 4 }{ 1 \times 3 \times 5 \times 7 \times 9 } +\ldots

Find the sum of the series above.


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mudit Bansal
Jan 19, 2015

I can rewrite the sum as: 1 2 r = 1 ( 2 r + 1 ) 1 1.3.5.... ( 2 r + 1 ) = 1 2 r = 1 1 1.3.5... ( 2 r 1 ) 1 3.5... ( 2 r + 1 ) \frac { 1 }{ 2 } \sum _{ r=1 }^{ \infty }{ \frac { \left( 2r+1 \right) -1 }{ 1.3.5....\left( 2r+1 \right) } } \\ =\quad \frac { 1 }{ 2 } \sum _{ r=1 }^{ \infty }{ \frac { 1 }{ 1.3.5...\left( 2r-1 \right) } -\frac { 1 }{ 3.5...\left( 2r+1 \right) } } now on applying the summation we get: = 1 2 [ ( 1 1 1 3 ) + ( 1 3 1 15 ) + ] =\quad \frac { 1 }{ 2 } \left[ (\frac { 1 }{ 1 } -\frac { 1 }{ 3 }) +(\frac { 1 }{ 3 } -\frac { 1 }{15}) + \ldots \right] as we can see the term cancels out and the final answer is 1 2 1 1 \frac { 1 }{ 2 } *\frac { 1 }{ 1 } = 0.5 =\quad 0.5

As the series tends to Infinity, the denominator will become infinite and the last term will be zero. So, the result is 0.5

AMAN KUMAR - 6 years, 4 months ago

Nice solution!

But it appears there are some typos.

Here is the corrected solution:

I can rewrite the sum as: 1 2 r = 1 ( 2 r + 1 ) 1 1 3 5... ( 2 r + 1 ) = 1 2 r = 1 [ 1 1 3 5... ( 2 r 1 ) 1 1 3 5... ( 2 r + 1 ) ] \frac { 1 }{ 2 } \sum _{ r=1 }^{ \infty }{ \frac { \left( 2r+1 \right) -1 }{ 1\cdot3\cdot5...\left( 2r+1 \right) } } \\ =\quad \frac { 1 }{ 2 } \sum _{ r=1 }^{ \infty } \left [ { \frac { 1 }{ 1\cdot3\cdot5...\left( 2r-1 \right) } -\frac { 1 }{ 1\cdot3\cdot5...\left( 2r+1 \right) } } \right]

now on applying the summation we get: = 1 2 [ 1 1 1 3 + 1 3 1 15 + 1 15 . . . . . . u p t o i n f i n i t y ] =\quad \frac { 1 }{ 2 } \left[ \frac { 1 }{ 1 } -\frac { 1 }{ 3 } +\frac { 1 }{ 3 } -\frac { 1 }{ 15 } +\frac { 1 }{ 15 } -......upto\quad infinity \right]

as we can see the series telecopes and the final answer is 1 2 1 1 \frac { 1 }{ 2 } *\frac { 1 }{ 1 } = 0.5 =\quad 0.5

Michael Fischer - 6 years, 4 months ago

Log in to reply

Thanks for reminding about the typos I've corrected them.

mudit bansal - 6 years, 4 months ago

similar solution.. !!

Aareyan Manzoor - 6 years, 4 months ago

@mudit bansal First of all,may i ask,how did you know the equation above can be rewrite as what you did.Is there a formula?

Stephen Thajeb - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...