1 − 2 ( x 2 − x + 1 ) x − x ≥ 1 How many real values of x satisfy the inequality above?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
1 − 2 ( x 2 − x + 1 ) x − x x − x x − 1 x 2 − 2 x + 1 x 2 + x + 1 x 4 + 2 x 3 + 3 x 2 + 2 x + 1 x 4 − 6 x 3 + 1 1 x 2 − 6 x + 1 x 2 − 6 x + 1 1 − x 6 + x 2 1 ( x + x 1 ) 2 − 6 ( x + x 1 ) + 9 ( x + x 1 − 3 ) 2 ⇒ x 2 − 3 x + 1 ( x − 2 3 + 5 ) ( x − 2 3 − 5 ) ≥ 1 Since 1 − 2 ( x 2 − x + 1 ) < 0 ≤ 1 − 2 ( x 2 − x + 1 ) ≤ x − 2 ( x 2 − x + 1 ) Squaring both sides ≤ x − 2 2 x ( x 2 − x + 1 ) + 2 x 2 − 2 x + 2 ≥ 2 2 x ( x 2 − x + 1 ) Squaring both sides ≥ 8 x 3 − 8 x 2 + 8 x ≥ 0 Dividing both sides by x 2 ≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0
We note that:
⎩ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎧ x = 2 3 + 5 x = 2 3 − 5 ⇒ 1 − 2 ( x 2 − x + 1 ) x − x < 1 ⇒ 1 − 2 ( x 2 − x + 1 ) x − x = 1
Therefore, there is only 1 value of x satisfies the inequality.
Your got your inequality in second step by multiplying the denominator throughout. But the denominator is negative hence shouldn't the sign in the inequality reverse in the second step.
Problem Loading...
Note Loading...
Set Loading...
Noticed that 1 − 2 ( x 2 − x + 1 ) < 0 ; ∀ x ∈ R so in order for the inequality to happen { x − x < 0 x − x ≤ 1 − 2 ( x 2 − x + 1 ) { x ∈ ( 0 ; 1 ) − x + x + 1 ≥ 2 ( x 2 − x + 1 ) Considering the second inequality we have x + ( 1 − x ) ≥ 2 ( x 2 − x + 1 ) By Cauchy-Schwarz Inequality we have L H S 2 ≤ 2 [ x + ( x − 1 ) 2 ] = 2 ( x 2 − x + 1 ) = R H S 2 ⇔ L H S ≤ R H S So ( 1 ) happen only when L H S = R H S ⇔ x = 1 − x ⇔ x = 2 3 − 5 Which satisfied x ∈ ( 0 ; 1 ) so 1 is the correct choice