Again, how many?

Algebra Level 5

x x 1 2 ( x 2 x + 1 ) 1 \large \frac{x-\sqrt{x}}{1-\sqrt{2(x^2-x+1)}}\geq 1 How many real values of x x satisfy the inequality above?

Infinitely many 2 1 None

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

P C
Mar 19, 2016

Noticed that 1 2 ( x 2 x + 1 ) < 0 ; x R 1-\sqrt{2(x^2-x+1)}<0; \forall x\in \mathbb{R} so in order for the inequality to happen { x x < 0 x x 1 2 ( x 2 x + 1 ) \begin{cases} x-\sqrt{x}<0\\ x-\sqrt{x}\leq 1-\sqrt{2(x^2-x+1)}\end{cases} { x ( 0 ; 1 ) x + x + 1 2 ( x 2 x + 1 ) \begin{cases} x\in (0;1)\\ -x+\sqrt{x}+1\geq\sqrt{2(x^2-x+1)}\end{cases} Considering the second inequality we have x + ( 1 x ) 2 ( x 2 x + 1 ) \sqrt{x}+(1-x)\geq\sqrt{2(x^2-x+1)} By Cauchy-Schwarz Inequality we have L H S 2 2 [ x + ( x 1 ) 2 ] = 2 ( x 2 x + 1 ) = R H S 2 LHS^2\leq 2[x+(x-1)^2]=2(x^2-x+1)=RHS^2 L H S R H S \Leftrightarrow LHS\leq RHS So ( 1 ) (1) happen only when L H S = R H S LHS=RHS x = 1 x \Leftrightarrow\sqrt{x}=1-x x = 3 5 2 \Leftrightarrow x=\frac{3-\sqrt{5}}{2} Which satisfied x ( 0 ; 1 ) x\in (0;1) so 1 1 is the correct choice

Chew-Seong Cheong
Mar 19, 2016

x x 1 2 ( x 2 x + 1 ) 1 Since 1 2 ( x 2 x + 1 ) < 0 x x 1 2 ( x 2 x + 1 ) x 1 x 2 ( x 2 x + 1 ) Squaring both sides x 2 2 x + 1 x 2 2 x ( x 2 x + 1 ) + 2 x 2 2 x + 2 x 2 + x + 1 2 2 x ( x 2 x + 1 ) Squaring both sides x 4 + 2 x 3 + 3 x 2 + 2 x + 1 8 x 3 8 x 2 + 8 x x 4 6 x 3 + 11 x 2 6 x + 1 0 Dividing both sides by x 2 x 2 6 x + 11 6 x + 1 x 2 0 ( x + 1 x ) 2 6 ( x + 1 x ) + 9 0 ( x + 1 x 3 ) 2 0 x 2 3 x + 1 0 ( x 3 + 5 2 ) ( x 3 5 2 ) 0 \begin{aligned} \frac{x-\sqrt{x}}{\color{#D61F06}{1-\sqrt{2(x^2-x+1)}}} & \ge 1 \quad \quad \small \color{#D61F06}{\text{Since } 1-\sqrt{2(x^2-x+1)} < 0} \\ x-\sqrt{x} & \color{#D61F06}{\le} 1-\sqrt{2(x^2-x+1)} \\ x-1 & \le \sqrt{x} -\sqrt{2(x^2-x+1)} \quad \quad \small \color{#3D99F6}{\text{Squaring both sides}} \\ x^2 - 2x + 1 & \le x - 2\sqrt{2x(x^2-x+1)} + 2x^2-2x+2 \\ x^2 + x + 1 & \ge 2 \sqrt{2x(x^2-x+1)} \quad \quad \small \color{#3D99F6}{\text{Squaring both sides}} \\ x^4 + 2x^3 + 3x^2 + 2x +1 & \ge 8x^3 - 8x^2 + 8x \\ x^4 - 6x^3 + 11x^2 - 6x +1 &\ge 0 \quad \quad \small \color{#3D99F6}{\text{Dividing both sides by }x^2} \\ x^2 - 6x + 11 - \frac{6}{x} +\frac{1}{x^2} &\ge 0 \\ \left(x+\frac{1}{x}\right)^2 - 6\left(x+\frac{1}{x}\right) + 9 & \ge 0 \\ \left(x+\frac{1}{x} - 3 \right)^2 & \ge 0 \\ \Rightarrow x^2-3x+1 & \ge 0 \\ \left(x - \frac{3+\sqrt{5}}{2} \right)\left(x - \frac{3-\sqrt{5}}{2} \right) & \ge 0 \end{aligned}

We note that:

{ x = 3 + 5 2 x x 1 2 ( x 2 x + 1 ) < 1 x = 3 5 2 x x 1 2 ( x 2 x + 1 ) = 1 \begin{cases} x = \dfrac{3+\sqrt{5}}{2} & \Rightarrow \dfrac{x-\sqrt{x}}{1-\sqrt{2(x^2-x+1)}} \color{#D61F06} {< 1} \\ x = \dfrac{3-\sqrt{5}}{2} & \Rightarrow \dfrac{x-\sqrt{x}}{1-\sqrt{2(x^2-x+1)}} \color{#3D99F6} {= 1} \end{cases}

Therefore, there is only 1 \boxed{1} value of x x satisfies the inequality.

Your got your inequality in second step by multiplying the denominator throughout. But the denominator is negative hence shouldn't the sign in the inequality reverse in the second step.

Arihant Samar - 5 years, 2 months ago

Log in to reply

Thanks, you are right.

Chew-Seong Cheong - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...