Again minimum

Algebra Level 3

Given that α , β \alpha,\beta are the roots of the equation x 2 + p x 1 2 p 2 = 0 , x^2+px-\frac{1}{2p^2}=0, where p p is a constant real number, find the minimum value of α 4 + β 4 . \alpha^4+\beta^4.

2 + 2 2+\sqrt{2} 2 2 2\sqrt{2} 2 2 2 2 2-\sqrt{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

U Z
Jan 9, 2015

α = a , β = b \alpha=a , \beta=b

Using Vieta's,

a + b = p , a b = 1 2 p 2 a + b = -p , ab = \dfrac{-1}{2p^2}

p 2 = a 2 + b 2 + 2 a b p^2 = a^2 + b^2 + 2ab

a 2 + b 2 = p 2 + 1 p 2 , a 4 + b 4 + 2 a 2 b 2 = p 4 + 1 p 4 + 2 a^2 + b^2 = p^2 + \dfrac{1}{p^2} , \implies a^4 + b^4 + 2a^2b^2 = p^4 + \dfrac{1}{p^4} + 2

a 4 + b 4 = p 4 + 1 2 p 4 + 2 a^4 + b^4 = p^4 + \dfrac{1}{2p^4} + 2

Even power thus it will remain as positve real

A . M G . M A.M \geq G.M

p 4 + 1 2 p 4 2 1 2 = 2 \quad \dfrac{p^4+\dfrac {1}{2p^4}}{2} \geq \sqrt{\frac {1}{2}} = \sqrt{2}

α 4 + β 4 = p 4 + 2 + 1 2 p 4 2 + 2 \quad \Rightarrow \alpha^4 + \beta^4 = p^4 + 2 + \dfrac {1}{2p^4} \ge \boxed {2+\sqrt{2}}

Nice solution. Your all solutions can be awesome if you use some wordings too in the solution, for better clarification for those who don't know the method.

Sandeep Bhardwaj - 6 years, 5 months ago

Since α \alpha and β \beta are roots of x 2 + p x 1 2 p 2 = 0 x^2+px-\dfrac {1}{2p^2} = 0 , using Vieta Formulas, we have:

α + β = p α β = 1 2 p 2 \quad \alpha + \beta = - p\quad \quad \alpha\beta = -\dfrac {1}{2p^2}

α 2 + β 2 = ( α + β ) 2 2 α β = p 2 + 1 p 2 \quad \Rightarrow \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha \beta = p^2 + \dfrac {1}{p^2}

α 3 + β 3 = ( α + β ) ( α 2 + β 2 α β ) \quad \Rightarrow \alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 + \beta^2 - \alpha \beta) = ( p ) ( p 2 + 1 p 2 ) + 1 2 p 2 = p 3 3 2 p \quad \quad \quad \quad \quad \quad = (-p)( p^2 + \dfrac {1}{p^2}) + \dfrac {1}{2p^2} = - p^3 - \dfrac {3}{2p}

α 4 + β 4 = ( α + β ) ( α 3 + β 3 ) ( α β ) ( α 2 + β 2 ) \quad \Rightarrow \alpha^4 + \beta^4 = (\alpha + \beta)(\alpha^3 + \beta^3) - (\alpha \beta)(\alpha^2 + \beta^2) = p 4 + 2 + 1 2 p 4 \quad \quad \quad \quad \quad \quad = p^4 + 2 + \dfrac {1}{2p^4}

Using Cauchy-Schwart inequality, we note that:

p 4 + 1 2 p 4 2 1 2 = 2 \quad p^4+\dfrac {1}{2p^4} \ge 2 \sqrt{\frac {1}{2}} = \sqrt{2}

α 4 + β 4 = p 4 + 2 + 1 2 p 4 2 + 2 \quad \Rightarrow \alpha^4 + \beta^4 = p^4 + 2 + \dfrac {1}{2p^4} \ge \boxed {2+\sqrt{2}}

Hey same here too!

Mehul Chaturvedi - 6 years, 5 months ago
Fox To-ong
Jan 12, 2015

more accurate if 3.5 is the answer..

Why do you think so??

Aaghaz Mahajan - 3 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...