Agree or Disagree

Do you agree or disagree that 8 2016 3 2016 8^{2016}-3^{2016} is divisible by 5?

Disagree because it is false Agree because it is true

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

展豪 張
May 29, 2016

Relevant wiki: Modular Arithmetic - Problem Solving - Basic

8 2016 3 2016 3 2016 3 2016 = 0 ( mod 5 ) 8^{2016}-3^{2016}\equiv 3^{2016}-3^{2016}=0(\text{mod }5)

Nice work.

Hana Wehbi - 5 years ago

8 2016 3 2016 = ( 8 3 ) ( 8 2015 + 3 8 2014 + . . . + 3 2014 8 + 3 2015 ) = 5 ( 8 2015 + 3 8 2014 + . . . + 3 2014 8 + 3 2015 ) 8^{2016}-3^{2016}=(8-3)({ 8 }^{ 2015 }+3\cdot { 8 }^{ 2014 }+...+{ 3 }^{ 2014 }\cdot 8+{ 3 }^{ 2015 })=5({ 8 }^{ 2015 }+3\cdot { 8 }^{ 2014 }+...+{ 3 }^{ 2014 }\cdot 8+{ 3 }^{ 2015 }) , clearly divisible by 5 5 .

Yes, it is true, you used the factorization of a n b n a^{n}-b^{n} = ( a b ) ( a n 1 + a n 2 b + . . . . . . + b n 2 a + b n 1 ) (a-b)(a^{n-1}+a^{n-2}b+......+b^{n-2}a+b^{n-1})

Hana Wehbi - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...