Ah, it's k^2/2^k

Calculus Level 2

Evaluate S \mathbb S S = 1 2 + 4 4 + 9 8 + 16 16 + 25 32 + \mathbb S=\frac 12 +\frac 44+\frac 98 +\frac{16}{16}+\frac{25}{32}+\cdots


The answer is 6.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Sravanth C.
Jun 30, 2018

S = k = 1 k 2 2 k = 1 2 k = 1 ( k 1 ) 2 2 k 1 + k = 1 ( 2 k 1 ) 2 k = 1 2 S + k = 1 k 2 k + 1 2 k = 1 ( k 1 2 k 1 ) = 1 2 S + 3 2 k = 1 k 2 k S 1 2 S = 3 2 k = 1 k 2 k \begin{aligned} \mathbb S&=\sum_{k=1}^\infty\frac{k^2}{2^k}\\ &=\frac 12\color{#3D99F6}\sum_{k=1}^\infty\frac{(k-1)^2}{2^{k-1}}\color{#333333}+\sum_{k=1}^\infty\frac{(2k-1)}{2^k}\\ &=\frac 12\color{#3D99F6}\mathbb S\color{#333333}+\color{#D61F06}\sum_{k=1}^\infty\frac{k}{2^k}\color{#333333}+\frac 12\color{#D61F06}\sum_{k=1}^\infty\left(\frac{k-1}{2^{k-1}}\right)\\ &=\frac 12\color{#3D99F6}\mathbb S\color{#333333}+\frac 32\color{#D61F06}\sum_{k=1}^\infty\frac{k}{2^k}\\ \mathbb S-\frac 12\color{#3D99F6}\mathbb S&\color{#333333}=\frac 32\color{#D61F06}\sum_{k=1}^\infty\frac{k}{2^k}\\ \end{aligned} So we can write 1 3 S = k = 1 k 2 k = 1 2 k = 1 k 1 2 k 1 + k = 1 1 2 k = 1 2 ( 1 3 S ) + 1 S = 6 \begin{aligned} \frac 13\color{#3D99F6}\mathbb S&\color{#333333}=\color{#D61F06}\sum_{k=1}^\infty\frac{k}{2^k}\\ &=\frac 12\color{#D61F06}\sum_{k=1}^\infty\frac{k-1}{2^{k-1}}\color{#333333}+\color{#20A900}\sum_{k=1}^\infty\frac{1}{2^k}\\ &=\frac 12\left(\frac 13\color{#3D99F6}\mathbb S\right)\color{#333333}+\color{#20A900}1\\ \mathbb S&=6 \end{aligned}

Can you add this solution to this problem ?

X X - 2 years, 11 months ago

Log in to reply

Wow we think similar ;)

Sure.

Sravanth C. - 2 years, 11 months ago

Log in to reply

Thank you!

X X - 2 years, 11 months ago
Denis Kartachov
Jun 30, 2018

Start with

k = 0 x k = 1 1 x d d x k = 0 x k = d d x 1 1 x x k = 1 k x k 1 = x 1 ( 1 x ) 2 d d x k = 1 k x k = d d x x ( 1 x ) 2 x k = 1 k 2 x k 1 = x 1 + x ( 1 x ) 3 k = 1 k 2 x k = x ( 1 + x ) ( 1 x ) 3 \begin{array}{l} \sum_{k=0}^{\infty} x^k = \frac{1}{1-x} \\ { \color{#3D99F6} \frac{d}{dx} } \sum_{k=0}^{\infty} x^k ={ \color{#3D99F6} \frac{d}{dx} } \frac{1}{1-x} \\ { \color{#3D99F6} x } \sum_{k=1}^{\infty} kx^{k-1} ={ \color{#3D99F6} x } \frac{1}{(1-x)^2} \\ { \color{#3D99F6} \frac{d}{dx} } \sum_{k=1}^{\infty} kx^{k} ={ \color{#3D99F6} \frac{d}{dx} }\frac{x}{(1-x)^2} \\ { \color{#3D99F6} x } \sum_{k=1}^{\infty} k^2x^{k-1} = { \color{#3D99F6} x } \frac{1+x}{(1-x)^3} \\ \sum_{k=1}^{\infty} k^2x^{k} = \frac{x(1+x)}{(1-x)^3} \\ \end{array}

Therefore,

k = 1 k 2 2 k = k = 1 k 2 ( 1 2 ) k = ( 1 2 ) ( 1 + 1 2 ) ( 1 1 2 ) 2 = 6 \begin{array}{l} \sum_{k=1}^{\infty} \frac{k^2}{2^k} = \sum_{k=1}^{\infty} k^2(\frac{1}{2})^k \\ = \frac{(\frac{1}{2})(1+\frac{1}{2})}{(1-\frac{1}{2})^2} = 6 \\ \end{array}

Woah, did you just think of this approach or is it some standard method?

Sravanth C. - 2 years, 11 months ago

Log in to reply

It's actually quite a standard procedure to solve convergent series like that!

Denis Kartachov - 2 years, 11 months ago

Log in to reply

How is this convergent???

James Bacon - 2 years, 11 months ago
Chew-Seong Cheong
Jun 30, 2018

S = k = 1 k 2 2 k = k = 0 k 2 2 k = k = 0 ( k + 1 ) 2 2 k + 1 = 1 2 k = 0 k 2 + 2 k + 1 2 k = 1 2 k = 0 k 2 2 k + k = 0 k 2 k + 1 2 k = 0 1 2 k Again k = 0 k 2 k = k = 1 k 2 k = S 1 = S 2 + k = 0 k + 1 2 k + 1 + 1 2 ( 1 1 1 2 ) = S 2 + 1 2 k = 0 k 2 k + 1 2 k = 0 1 2 k + 1 = S 2 + S 1 2 + 1 = S 1 + 1 Since S 1 = S 1 2 + 1 S 1 = 2 = S 2 + 2 + 1 = 6 \begin{aligned} S & = \sum_{\color{#3D99F6}k=1}^\infty \frac {k^2}{2^k} = \sum_{\color{#D61F06}k=0}^\infty \frac {k^2}{2^k} \\ & = \sum_{\color{#D61F06}k=0}^\infty \frac {(k+1)^2}{2^{k+1}} \\ & = \frac 12 \sum_{k=0}^\infty \frac {k^2+2k+1}{2^k} \\ & = \frac 12 \sum_{k=0}^\infty \frac {k^2}{2^k} + {\color{#3D99F6}\sum_{\color{#D61F06}k=0}^\infty \frac k{2^k}} + \frac 12 \sum_{k=0}^\infty \frac 1{2^k} & \small \color{#3D99F6} \text{Again }\sum_{\color{#D61F06}k=0}^\infty \frac k{2^k} = \sum_{k=1}^\infty \frac k{2^k} = S_1 \\ & = \frac S2 + {\color{#3D99F6}\sum_{k=0}^\infty \frac {k+1}{2^{k+1}}} + \frac 12 \left(\frac 1{1-\frac 12}\right) \\ & = \frac S2 + {\color{#3D99F6}\frac 12 \sum_{k=0}^\infty \frac k{2^k} + \frac 12 \sum_{k=0}^\infty \frac 1{2^k}} + 1 \\ & = \frac S2 + {\color{#3D99F6}\underbrace{\frac {S_1}2 + 1}_{=S_1}} + 1 & \small \color{#3D99F6} \text{Since } S_1 = \frac {S_1}2+1 \implies S_1 = 2 \\ & = \frac S2 + {\color{#3D99F6}2} + 1 \\ & = \boxed{6} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...