Ahaan's trigonometric progression

Geometry Level 4

Let θ \theta be an acute angle which satisfies the equation n = 0 sin 2 n + 1 θ = 1. \sum_{n = 0}^{\infty} \sin^{2n + 1} \theta = 1. The value of 2 tan 8 θ 2 \, \tan^8 \theta can be expressed in the form a b c a - b \sqrt {c} , where a , b a, b , and c c are positive integers and c c not a multiple of the square of any prime. What is the value of a + b + c a+b+c ?

This problem is posed by Ahaan Rungta .


The answer is 15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

34 solutions

Muhammad Al Kahfi
Jul 14, 2013

By Infinite sum of gemetric series formula, since 0 sin 2 θ = ( sin θ ) 2 1 0 \le \sin^2 \theta = (\sin \theta)^2 \le 1 , then :

a = sin θ a = \sin \theta , and r = sin 2 θ r = \sin^2 \theta , then,

n = 0 sin 2 n + 1 θ = a 1 r \sum_{n=0}^{\infty} \sin^{2n+1} \theta = \frac{a}{1 - r} = sin θ 1 sin 2 θ = 1 ( 1 ) = \frac{\sin \theta}{1 - \sin^2 \theta} = 1 \ldots \ldots (1)

Then, we obtain sin 2 θ + sin θ 1 = 0 \sin^2 \theta + \sin \theta - 1 = 0 , where the solution is

sin θ = 5 1 2 cos 2 θ = 1 s i n 2 θ = 5 1 2 \sin \theta = \frac{\sqrt{5} - 1}{2} \implies \cos^2 \theta = 1 - sin^2 \theta = \frac{\sqrt{5} - 1}{2}

Recall (1), again, 1 = tan θ cos θ tan θ = cos θ 2 tan 8 θ = 2 ( cos 2 θ ) 4 = 7 3 5 1 = \frac{\tan \theta}{\cos \theta} \implies \tan \theta = \cos \theta \implies 2 \tan^8 \theta = 2 (\cos^2 \theta)^4 = 7 - 3\sqrt{5}

Then, a + b + c = 7 + 3 + 5 = 15 a + b + c = 7 + 3 + 5 = \boxed{15}

I can't understand why comments are deleted. Anyways I would like to ask you that you have written 0 0 \leq s i n 2 θ sin^{2}\theta 1 \leq1 , but you have not mentioned anywhere that indeed s i n 2 θ sin^{2}\theta cannot assume ( \big( for a particular value of θ \theta ) \big) the values at the ends of intervals indicated.

Nishant Sharma - 7 years, 11 months ago

Log in to reply

up, since r = s i n 2 θ < 1 r = sin^2 \theta < 1 , we can use infinite geometry series..

Muhammad Al Kahfi - 7 years, 11 months ago

Log in to reply

Yeah that was fine. Even when r r = 1 1 it will still be an infinite G.P.

Nishant Sharma - 7 years, 11 months ago

Made a very big mistake took common ratio as sin 2 x \sin^2 x

U Z - 6 years, 4 months ago
Ahaan Rungta
Jul 14, 2013

We see that n = 0 sin 2 n + 1 θ = sin 1 θ + sin 3 θ + sin 5 θ + = sin θ 1 sin 2 θ = 1. \displaystyle\sum_{n=0}^{\infty} \sin^{2n+1} \theta = \sin^1 \theta + \sin^3 \theta + \sin^5 \theta + \cdots = \dfrac {\sin \theta}{1 - \sin^2 \theta} = 1. Here, we used the infinite sum of a geometric series. If we set y = sin θ y = \sin \theta , we obtain y = 1 y 2 y = 1 - y^2 . Now, we know that tan θ = sin θ 1 sin 2 θ tan 8 θ = ( y 2 1 y 2 ) 4 . \tan \theta = \dfrac {\sin \theta}{\sqrt {1 - \sin^2 \theta}} \implies \tan^8 \theta = \left( \dfrac {y^2}{1 - y^2} \right)^4. Now, we note that y 2 1 y 2 = y 1 y 2 y = 1 y = y \dfrac {y^2}{1 - y^2} = \dfrac {y}{1 - y^2} \cdot y = 1 \cdot y = y . Therefore, our answer is 2 y 4 2y^4 . But recall that y = 1 y 2 y = 1 - y^2 , so we solve: y 2 + y 1 = 0 y = 5 1 2 , y^2 + y - 1 = 0 \implies y = \dfrac {\sqrt{5}-1}{2}, since y y is positive. We want 2 y 4 2y^4 , so we expand and we eventually get 7 3 5 7 - 3 \sqrt {5} , so the answer is 7 + 3 + 5 = 15 7 + 3 + 5 = \boxed {15} .

You get this problem too... lol

pebrudal zanu - 7 years, 11 months ago

Log in to reply

what a shame ya bang.. tinggal ngopas solusi yang dikirim.... -_-

Muhammad Al Kahfi - 7 years, 11 months ago

kahfi also bang every time i think wkwk ...lol

uzumaki nagato tenshou uzumaki - 7 years, 11 months ago

hmm, you proposed and you submit the solution...

Annisa Rahmah - 7 years, 11 months ago

Log in to reply

Why can't the proposer submit a solution ? He/she should definitely be given a chance to do so. I myself had raised this question a week or so before, and then got to know the reason behind it.

Nishant Sharma - 7 years, 11 months ago
Vikram Waradpande
Jul 15, 2013

The series says sin x + sin 3 x + sin 5 x . . . . = 1 sin x + sin 2 x ( sin x + sin 3 x + sin 5 ) sin x + sin 2 x = 1 \sin x + \sin^3 x + \sin^5 x....=1 \\ \implies \sin x + \sin^2 x ( \sin x + \sin^3 x + \sin^5 ) \\ \implies \sin x +\sin^2 x =1 Therefore sin x = 5 1 2 \sin x = \frac{\sqrt {5} -1 }{2} \\ We also get sin 2 x = cos x \sin^2 x = \cos x Writing tan x \tan x as s i n x c o s x \large \frac{sin x}{cos x} and then simplifying, we get tan 8 x = 7 3 5 \tan^8 x = 7 - 3\sqrt{5} So a + b + c = 15 \boxed{a+b+c = 15}

Yup, I've seen the method before, but it's pretty nice in this problem.

That's how you would evaluate something like 2 + 2 + 2 + . . . \sqrt{2+\sqrt{2+\sqrt{2+...}}}

Kevin Fei - 7 years, 11 months ago

@Kevin F. A similar method can solve this problem http://www.qsl.net/zl1an/Downloads/Infinite resistor chain.pdf

A L - 7 years, 11 months ago

Substituting the inifinite series back into itself was a really clever move!

Kevin Fei - 7 years, 11 months ago
Bryan Andrade
Jul 14, 2013

Σ \Sigma sin 2 n + 1 θ \sin^{2n+1} \theta = sin θ \sin \theta (1 + sin 2 θ \sin^{2} \theta + sin 4 θ \sin^{4} \theta + ... ) = sin θ \sin \theta ( 1 1 sin 2 θ ) \frac{1}{1 - \sin^{2} \theta}) = 1. Which gives sin θ \sin \theta = cos 2 θ \cos^{2} \theta .Substituing on s i n 2 θ sin^{2} \theta + c o s 2 θ cos^{2} \theta = 1, give to us the following equation: cos 4 θ \cos^{4} \theta + cos 2 θ \cos^{2} \theta - 1=0, taking the positive root , we have: cos 2 θ \cos^{2} \theta = 5 1 2 \frac{\sqrt{5} - 1}{2} . We want 2 sin 8 θ cos 8 θ \frac{ \sin^{8} \theta}{\cos^8 \theta} , but sin θ \sin \theta = cos 2 θ \cos^{2} \theta , so we want

2 cos 8 θ \cos^{8} \theta = ( 5 1 ) ( 2 ) 4 4 \frac{(\sqrt{5} - 1)}{(2)^{4}}^{4} = 7 - 3 5 \sqrt{5} . Hence 7 + 3 + 5 = 15

Daniel Chiu
Jul 14, 2013

The given summation simply results in a geometric series, with first term sin θ \sin\theta and common ratio sin 2 θ \sin^2\theta . The formula for the sum of an infinite geometric series is a 1 r \frac{a}{1-r} , so the given sum is equivalent to sin θ 1 sin 2 θ \frac{\sin\theta}{1-\sin^2\theta} . Since this equals 1, we have that sin θ 1 sin 2 θ = 1 \frac{\sin\theta}{1-\sin^2\theta}=1 sin θ = 1 sin 2 θ ( 1 ) \sin\theta=1-\sin^2\theta\ (1) sin θ = cos 2 θ ( 2 ) \sin\theta=\cos^2\theta\quad\ \ \ (2) Equation (2) follows from the Pythagorean identity sin 2 θ + cos 2 θ = 1 \sin^2\theta+\cos^2\theta=1 .

Now, we must find 2 tan 8 θ = 2 sin 8 θ cos 8 θ 2\tan^8\theta=2\frac{\sin^8\theta}{\cos^8\theta} But by equation (2) 2 sin 8 θ cos 8 θ = 2 sin 8 θ sin 4 θ = 2 sin 4 θ 2\frac{\sin^8\theta}{\cos^8\theta}=2\frac{\sin^8\theta}{\sin^4\theta}=2\sin^4\theta All we have to do is find sin θ \sin\theta , and we can, using the quadratic formula on equation (1). sin θ = 1 ± 5 2 \sin\theta=\frac{-1\pm\sqrt{5}}{2} Since θ \theta is acute, sin θ \sin\theta is positive. Finally, 2 ( 5 1 2 ) 4 = 7 3 5 2\left(\frac{\sqrt{5}-1}{2}\right)^4=7-3\sqrt{5} The answer is 7 + 3 + 5 = 15 7+3+5=\boxed{15}

Dionys Nipomici
Jul 15, 2013

i) Evaluating the given summation ∑sin²ⁿ+¹(Ө) for n = 0 to ∞, This sum S = sin(Ө) + sin³Ө + sin⁵Ө + sin⁷Ө + ....... up to infinity

This is in GP, whose 1st term is sin(Ө) and common ratio is sin²Ө As Ө is an acute angle, sin(Ө) is in (0, 1); so, sin²Ө also in (0, 1) ==> |r| < 1 So the series sum forms infinite sum, which equal = a/(1 - r) = sinӨ/(1 - sin²Ө)

ii) Given sum = 1 ==> sinӨ = 1 - sin²Ө = cos²Ө ------ (1) Rearranging, sin²Ө + sinӨ - 1 = 0

This is a quadratic in sinӨ; solving sin(Ө) = (√5 - 1)/2 ----- (2) [Only positive values is taken; negative value is rejected, since Ө is acute]

iii) tan⁸Ө = sin⁸Ө/cos⁸Ө = sin⁸Ө/(cos²Ө)⁴ But from (1), cos²Ө = sinӨ

Substituting this in the above, it reduces to: tan⁸Ө = sin⁸Ө/sin⁴Ө = sin⁴Ө ----- (3)

iv) From (2), sin(Ө) = (√5 - 1)/2 ==> sin²Ө = [(√5 - 1)/2]² = (3 - √5 )/2

==> sin⁴Ө = [(3 - √5 )/2]² = (7 - 3√5 )/2

v) Hence of the above, 2 tan⁸Ө = 2 sin⁴Ө = 2*[ (7 - 3√5 )/2] = (7 - 3√5 )

==> a−b√c = 7 - 3√5; so a = 7; b = 3 and c = 5

Hence a + b + c = 15

Aditya Parson
Jul 15, 2013

Let S = n = 0 sin 2 n + 1 θ S=\sum_{n=0}^\infty \sin^{2n+1} \theta

S = sin θ + sin 3 θ + sin 5 θ S=\sin \theta + \sin^3 \theta + \sin^5 \theta \ldots

Multiply both sides by sin 2 θ \sin^2 \theta

sin 2 θ S = sin 3 θ + sin 5 θ \sin^2\theta \cdot S=\sin^3 \theta+\sin^5 \theta \ldots

Hence we get :

S ( 1 sin 2 θ ) = sin θ S(1-\sin^2\theta)=\sin\theta

Now since S = 1 S=1 ,

sin θ = c o s 2 θ \Rightarrow \sin \theta= cos^2 \theta

sin 2 θ + sin θ 1 = 0 \Rightarrow \sin^2 \theta+ \sin \theta -1=0 )

As such we can re-write

2 tan 8 θ 2 \tan^8 \theta as 2 s i n 4 θ 2 sin^4 \theta .

Solving for s i n θ sin \theta in the quadratic gives us that sin θ = 1 ± 5 2 \large \sin \theta = \frac{-1 \pm \sqrt{5}}{2}

Note that since sin θ 1 \sin \theta \geq -1 we must have sin θ = 5 1 2 \large \sin \theta =\frac{\sqrt{5}-1}{2}

And expanding 2 sin 4 θ 2\sin^4 \theta gives us:

7 3 5 7-3\sqrt{5}

Hence our answer is : 15 \boxed{15}

I think most of the solutions to this particular problem overlap a lot. I don't know how is the Challenge Master going to pick the best. Please look into my solution too. Well I think people who have submitted solutions earliest have a better chance of being voted up than those who have submitted a bit later. Do comment............

Nishant Sharma - 7 years, 11 months ago
Nishant Sharma
Jul 14, 2013

The given sum is clearly an infinite G.P. with common ratio 0 0 \leq s i n 2 θ sin^{2}\theta 1 \leq1 . Obviously s i n θ sin\theta cannot assume values at end points, because if s i n θ sin\theta = 0 0 or 1 1 the sum would be 0 0 or \infty respectively both of which do not agree with the given sum of 1 1 . So 0 < 0< s i n 2 θ sin^{2}\theta < 1 <1 .

Using the formula for sum of an infinite G.P. we get s i n θ sin\theta /(1- s i n 2 θ sin^{2}\theta ) = 1 1 -----( \ast )

Solving eqn.( \ast ) we get s i n θ sin\theta = 1 + 5 2 \frac{-1+\sqrt5}{2} -----( \ast \ast ) (rejecting the negative value since θ \theta is an acute angle).

From eqn( \ast ) we have s i n θ sin\theta = c o s 2 θ cos^{2}\theta . So t a n 2 θ tan^{2}\theta = s i n 2 θ sin^{2}\theta / c o s 2 θ cos^{2}\theta = s i n θ sin\theta . So 2 t a n 8 θ 2tan^{8}\theta = 2 2 ( t a n 2 θ tan^{2}\theta )^4 = 2 s i n 4 θ 2sin^{4}\theta = 7 3 7-3 5 \sqrt{5} = a b a - b c \sqrt{c} . Comparing we obtain a + b + c a + b + c = 7 + 3 + 5 7 + 3 + 5 = 15 \boxed{15} as our answer.

Debjit Mandal
Jul 18, 2013

sinθ + sin^3θ + sin^5θ + sin^7θ +..........=1 _ (1) \Rightarrow sinθ(1 + sin^2θ + sin^4θ + sin^6θ +......)=1 \Rightarrow sinθ{ (sinθ + sin^3θ + sin^5θ + sin^7θ +..........) + sin^2θ + sin^4θ + sin^6θ +........ }=1 [By putting the value of '1', from the equation (1)] \Rightarrow (sinθ + sin^2θ + sin^3θ + sin^4θ + sin^5θ + sin^6θ + sin^7θ +..........)=\frac {1}{sinθ} __ (2) \Rightarrow sinθ( 1 + sinθ + sin^2θ + sin^3θ + sin^4θ + sin^5θ + sin^6θ + sin^7θ +..........)=\frac {1}{sinθ} \Rightarrow sinθ( 1 + \frac {1}{sinθ} )= \frac {1}{sinθ} [By putting the value of 'sinθ + sin^2θ + sin^3θ + sin^4θ + sin^5θ + sin^6θ + sin^7θ +..........' from the equation (2)] \Rightarrow sin^2θ + sinθ=1 \Rightarrow sin^2θ + sinθ - 1=0 \Rightarrow sinθ=\frac{-1 \pm \sqrt{1+4}}{2} We know that, θ is acute angel, so the negative value of sinθ must be eliminated. So, sinθ= \frac{-1 + \sqrt{1+4}}{2} \Rightarrow sin^2θ= \frac{3 - \sqrt{5}}{2} \Rightarrow cos^2θ=\frac{-1 + \sqrt{1+4}}{2} \Rightarrow tan^2θ=\frac{-1 + \sqrt{1+4}}{2} \Rightarrow tan^8θ=\frac{7 - 3\sqrt{5}}{2} \Rightarrow 2tan^8θ=\frac{7 - 3\sqrt{5}} So, a=7, b=3, c=5. Then, a+b+c=7+3+5=15[answer]

Aman Tiwari
Jul 18, 2013

Let us denote the above sum by S.

S=sinθ +sin^3 θ +sin^5 θ......

S(sin^2 θ)=sin^3 θ+sin^5 θ+sin^7 θ.....

S-S(sin^θ)=sinθ

S(1-sin^2 θ)=sinθ

S=sinθ/1-sin^2 θ=1

from the above equation sinθ= (-1 ±√5)/2

also from the same equation sinθ=cos^2 θ

cos^2 θ=sin θ=(-1 ±√5)/2

now 2tan^8 θ=2sin^8 θ/cos^8 θ=2cos^8 θ=7-3√5=a-b√c

a+b+c=7+3+5=15

Piyal De
Jul 15, 2013

The given sum is an infinite G.P and as -1<=sin(x)<=1 for all x the sum will converge. The G.P given here has 1st term(a) as sin(x), and common ratio(r) as sin^2(x) so the given sum(S) becomes

S=a/(1−r) =sin(x)/(1−sin^2(x)) = 1……(A)......(which is given to be 1 in the question)

Simplifying.........

sin^2(x)+sin(x)−1=0

This is a quadratic in sin(x) having solutions as: sin(x)=((5^0.5)-1)/2..................(B) (since x is acute so value of sin(x) >0)

From (A), sin(x)/(1-sin^2(x)) =1 ................or ( sin(x) / cos(x) ) =cos(x)..........................

so...........tan(x)=cos(x)...........2tan^8(x)=2(cos^2(x))^4....................(C)

Now from the previous value of sin(x) from (B) the value of cos^2(x)=1-sin^2(x) will be got which should be plugged into (C) to obtain................2tan^8(x)=7-3*(5^0.5)...........................so a=7, b=3, c=5...............a+b+c=15(Answer)

Owen Scott
Jul 14, 2013

First, simplify the summation given...

(sinx) + (sinx)^3 + (sinx)^5 + ... = (sinx) / (1-(sinx)^2) = sinx / (cosx)^2 = tanx * secx = 1

This also means sinx = (cosx)^2 which we will use later

Now, we need to simplify 2*(tanx)^8. We will use the fact that (tanx)^2 = (secx)^2 - 1 and that tanx * secx = 1

2 (tanx)^8 = 2 (tanx)^4 * ((secx)^4 - 2*(secx)^2 + 1) = 2(tanx)^4(secx)^4 - 4(tanx)^4(secx)^2 + 2(tanx)^4 = 2 - 4(tanx)^2 + 2 - 2(tanx)^2 = 4 - 6(tanx)^2

Almost there. All that's left is to figure out how to evaluate (tanx)^2

From our first summation above, we have sinx = (cosx)^2 = (1 - sinx)^2. If we solve the equation for sinx, we can then solve for (sinx)^2 and (cosx)^2. I'm skipping the algebra but have given (sinx)^2 and (cosx)^2 below.

(sinx)^2 = (6 - 2sqrt5) / 4

(cosx)^2 = 2sqrt5 - 2 / 4

(tanx)^2 = -1/2 + sqrt5 /2

4 - 6 (tanx)^2 = 7 - 3 sqrt5

7+3+5 = 15

n = 0 sin 2 n + 1 θ = sin θ + sin 3 θ + = 1 \displaystyle \sum_{n=0}^\infty \sin^{2n+1} \theta =\sin\theta +\sin^3\theta +\cdots =1 which is a geometric series with common ratio sin 2 θ \sin^2\theta . So n = 0 sin 2 n + 1 θ = sin θ 1 sin 2 θ = 1 sin θ = 1 sin 2 θ \displaystyle \sum_{n=0}^\infty \sin^{2n+1}\theta=\frac {\sin\theta}{1-\sin^2 \theta}=1\Rightarrow \sin\theta=1-\sin^2\theta \Rightarrow sin 2 θ + sin θ 1 = 0 \sin^2\theta+\sin\theta-1=0 . Making the substitution y = sin θ y=\sin\theta , we get y 2 + y 1 = 0 y^2+y-1=0 . Solving this we get: y = 5 1 2 = sin θ y=\frac {\sqrt{5}-1}{2}=\sin\theta . Now using sin θ 1 sin 2 θ = 1 \frac {\sin\theta}{1-\sin^2 \theta}=1 we get two more facts: tan θ = cos θ \tan\theta=\cos\theta and sin θ = cos 2 θ \sin\theta=\cos^2\theta . Now 2 tan 8 θ = 2 cos 8 θ = 2 sin 4 θ 2\tan^8\theta=2\cos^8\theta=2\sin^4\theta . Finally substituting sin θ = 5 1 2 \sin\theta=\frac {\sqrt{5}-1}{2} into our equation we get 2 tan 8 θ = 2 sin 4 θ = 7 3 5 2\tan^8\theta=2\sin^4\theta=7-3\sqrt{5} . 7 + 3 + 5 = 15 7+3+5=15 .

My mutiplying the sum with ( s i n x ) 2 (sinx)^2 and subtract, noting that ( s i n x ) ( 2 n + 1 ) 0 (sinx)^(2n+1)\rightarrow0 when n + \infinite n\rightarrow+\infinite , we have s i n x / ( 1 ( s i n x ) 2 ) = 1 sinx/(1-(sinx)^2)=1 . since x is an acute angle, this gives s i n x = 1 + s q r t 5 2 sinx=\frac{-1+sqrt5}{2} Moreover s i n x = 1 ( s i n x ) 2 = ( c o s x ) 2 sinx=1-(sinx)^2=(cosx)^2 then ( c o s x ) 2 = s q r t 5 1 2 (cosx)^2=\frac{sqrt5-1}{2} and \8tanx=cosx)

Hence 2 ( t a n x ) 8 = 2 ( c o s x ) 8 = 2. ( s q r t 5 1 2 4 ) = 7 3 s q r t 5 2(tanx)^8=2(cosx)^8=2.(\frac{sqrt5-1}{2}^4)=7-3sqrt5 The answer is 15.

Hm, that's AoPS-formatting. Brilliant's not on a dollar sign convention. Good job though!

Ahaan Rungta - 7 years, 11 months ago

Log in to reply

thanks so how can I fix this??

Bờ La Bốc Khói - 7 years, 11 months ago
Akku Sharma
Jul 21, 2013

T 0 T_0 = sin θ \sin\theta , T 1 T_1 = sin 3 θ \sin^3\theta , T 2 T_2 = sin 5 θ \sin^5\theta , ............... . . Therefore we conclude that it will make an infinite GP.......... Here We observe that common difference is s i n 2 θ sin^2\theta ..........We know that SUM of an infinite GP is ^a\(1-r) where r is the common difference in the GP........ Now, sin θ \sin\theta divided by 1 ( s i n 2 θ 1-(sin^2\theta ) is equal to 1(as given in the question){by putting the above statement GP's sum} ..... sin θ \sin\theta = 1 ( s i n 2 θ 1-(sin^2\theta ) {cross-multiplication} ........... Let sin θ \sin\theta = y. We make a quadratic equation in y. Equation is : y 2 + y 1 y^2+y-1 . From this equation we find the value of y y i.e. sin θ \sin\theta (by quadratic formula) which is equal to 1 ± 5 2 \frac{-1 \pm \sqrt{5}}{2} ............................. We will take the one which has positive sign and neglect the one with negative sign as if we take the one with negative sign, value will be less than 1 -1 which cannot be a value of sin θ \sin\theta ........ Now, sin θ \sin\theta = cos 2 θ \cos^2\theta ....... We have to find 2 tan 8 θ \tan^8\theta i.e. 2( sin 8 θ \sin^8\theta / cos 8 θ \cos^8\theta ) which is now 2( sin 8 θ \sin^8\theta / sin 4 θ \sin^4\theta ) i.e. 2 sin 4 θ \sin^4\theta = 2 y 4 y^4 ................. We find out y 4 y^4 which is equal to 7 3 5 2 \frac{7- 3\sqrt{5}}{2} {by raising y(which we had got earlier) to power 4} and now multiply it by 2 to get 2 y 4 y^4 which would come out as 7 3 5 7 - 3\sqrt{5} .............. which is in the form of a b c a - b\sqrt{c} .......... therefore the solution is 7+3+5 i.e. 15 15 .

David Nolasco
Jul 21, 2013

We note that i = 0 s i n 2 n + 1 \sum_{i=0}sin^{2n+1} ) is the same as sinθ + s i n 3 sin^{3} θ + s i n 5 sin^{5} + ...

Since sinθ is only from (0,1), we can note that this is an infinite geometric progression with common ratio of s i n 2 sin^{2} θ.

So the sum is given by s i n θ 1 s i n 2 θ \frac{sinθ}{1-sin^{2}θ} . Then s i n θ 1 s i n 2 θ \frac{sinθ}{1-sin^{2}θ} = 1 or s i n 2 sin^{2} θ + sinθ -1 = 0

Solving for sinθ, we get sinθ = 5 1 2 \frac{\sqrt{5}-1}{2}

We note that sinθ = c o s 2 cos^{2} θ based from the first equation since 1- s i n 2 sin^{2} θ = c o s 2 cos^{2} θ

So t a n 8 tan^{8} = s i n 8 θ c o s 8 θ \frac{sin^{8}θ}{cos^{8}θ} = s i n 8 θ ( c o s 2 θ ) 4 \frac{sin^{8}θ}{(cos^{2}θ)^{4}} = s i n 8 θ s i n 4 θ \frac{sin^{8}θ}{sin^{4}θ} = s i n 4 sin^{4} θ

So 2 t a n 8 tan^{8} = 2 ( 5 1 2 ) 4 (\frac{\sqrt{5}-1}{2})^{4} = 7 - 3 5 \sqrt{5} ; a + b + c then is 7 + 3 + 5 =15

Ang Yan Sheng
Jul 20, 2013

By summing the geometric series, we get sin θ + sin 3 θ + sin 5 θ + = sin θ 1 sin 2 θ = sin θ cos 2 θ = 1 , \begin{aligned}\sin\theta+\sin^3\theta+\sin^5\theta+\cdots&=\frac{\sin\theta}{1-\sin^2\theta}\\&=\frac{\sin\theta}{\cos^2\theta}\\&=1,\end{aligned} so sin θ = cos 2 θ \sin\theta=\cos^2\theta .

Let tan 2 θ = x \tan^2\theta=x ; clearly x 0 x\geq0 . Also, 1 + x = sec 2 θ 1+x=\sec^2\theta , so cos 2 θ = 1 1 + x \cos^2\theta=\frac1{1+x} and sin 2 θ = 1 1 1 + x = x 1 + x \sin^2\theta=1-\frac1{1+x}=\frac{x}{1+x} . Thus sin 2 θ = cos 4 θ x 1 + x = 1 ( 1 + x ) 2 x ( 1 + x ) = 1 x = 1 ± 5 2 \begin{aligned}\sin^2\theta&=\cos^4\theta\\\frac{x}{1+x}&=\frac1{(1+x)^2}\\x(1+x)&=1\\x&=\frac{-1\pm\sqrt5}2\end{aligned} But x 0 x\geq0 , so x = 1 + 5 2 x=\frac{-1+\sqrt5}2 . Therefore 2 tan 8 θ = 2 x 4 = 7 3 5 2\tan^8\theta=2x^4=7-3\sqrt5 , and the answer is 7 + 3 + 5 = 15 7+3+5=\boxed{15} .

Syed Afran Ahmmad
Jul 20, 2013

The sum is \sin\theta+\sin^3\theta+\sin^5\theta....So it is an infinite G.P.and according to the formula the sum is \frac{ \sin\theta}{1-\sin^2\theta} which is given is equal to 1.so we find that as \theta is an acute angle the value of \sin\theta is \frac{\sqrt{5}-1}{2}.hence we can easily find out \tan\theta as well as 2\tan^8\theta.

Tửng Khùng
Jul 20, 2013

cosθ=0 does not sastìy the problem

multiply the equation by 2cos θ we have 2cosθ= sin2θ ( 1 + (sinθ)^2 +(sinθ)^4 + .... )

do this one more time we have 4(cosθ)^2=sin2θ ( 2cosθ + sin2θ*( sinθ + (sinθ)^3 +......))

<=> 4(cosθ)^2= sin2θ* (2cosθ +sin2θ)

<=>4(cosθ)^2 = 4sinθ * (cosθ)^2 + 4 (sinθcosθ)^2

<=> (sinθ)^2 + sinθ -1=0 (*)

<=> sinθ= (cosθ)^2 <=> (sinθ)^4 = (cosθ)^8

(tanθ)^8= (sinθ)^8/ (cosθ)^8= (sinθ)^4

(*)<=> sin θ = ( - 1 + V5 )/2 => (sinθ)^2= (3 - V5)/2 => (sinθ)^4= (7 - 3V5)/2 =>2(tanθ)^8=7 -3V5

a+b+c = 7+3+5 =15

J P
Jul 20, 2013

Let s = sin θ and t = tan θ \text{Let }s=\sin \theta \text{ and }t=\tan\theta

s 1 s 2 = 1 s = 1 + 5 2 \frac{s}{1-s^2}=1\Rightarrow s=\frac{-1+\sqrt{5}}{2}

s 2 = 3 5 2 s^2=\frac{3-\sqrt{5}}{2}

t 2 = ( 3 5 ) / 2 1 ( 3 5 ) / 2 = 5 1 2 t^2=\frac{(3-\sqrt{5})/2}{1-(3-\sqrt{5})/2}=\frac{\sqrt{5}-1}{2}

2 t 2 = 5 1 2t^2=\sqrt{5}-1

4 t 4 = 6 2 5 4t^4=6-2\sqrt{5}

16 t 8 = 56 24 5 16t^8=56-24\sqrt{5}

2 t 8 = 7 3 5 2t^8=7-3\sqrt{5}

Abhishek Pushp
Jul 20, 2013

∑(n=0 to ∞)sin^(2n+1)θ=sinθ+ sin³θ+ sin⁵θ+ sin⁷θ+ ....... ∞ we observe it si infinite G.P series with common Ratio sin²θ it its value always lies (0 1) so |r|<1 then sum =sinθ/(1-sin²2θ)=1 OR cos²θ= sinθ...................(1)

OR sin²θ+sinθ-1=0-----------------(2) ON SOLVING WE GET sinθ= (√5 - 1)/2 (NEGATIVE PART REJECTED) NOW 2tan⁸θ= 2 sin⁸θ/cos⁸θ = 2 sin⁸θ/(cos²θ)⁴ =2 SIN^4θ FROM (1) =2 [ (√5 - 1)/2]^4= (7 - 3√5 ) SO ANSWER IS 7+3+5=15

Athul Nambolan
Jul 20, 2013

As sequence will be similar to an infinite GP , so sin θ 1 sin 2 θ \frac { \sin \theta}{1 - \sin^2\theta} =1 On solving the quadratic we get values of s i n θ sin\theta and hence t a n θ tan\theta = ( 5 1 ) / 2 \sqrt{(\sqrt{5} - 1)/2}

ANd now on simplifying 2 tan 8 θ 2\tan^8\theta we get 7 3 5 7 -3\sqrt{5}

Ricardo Alencar
Jul 19, 2013

It's easy to see that n = 0 sin 2 n + 1 θ \sum_{n = 0}^{\infty}\sin^{2n + 1}\theta is a infinity geometric progression of ratio sin 2 θ \sin^2\theta , which is clearly lesser than 1 so, we have: $$ S = \frac{a 1}{1 - q} \Rightarrow \sum {n = 0}^{\infty}\sin^{2n + 1}\theta = \frac{\sin\theta}{1 - \sin^2\theta} = 1 $$ Using some trigonometric transformations we'll get to: $$ \tan\theta\sec\theta = 1 \Rightarrow \tan\theta\sqrt{1 + \tan^2\theta} = 1 $$ Squaring both sides: $$ \tan^2\theta(1 + \tan^2\theta) = 1 \Rightarrow \tan^4\theta + \tan^2\theta - 1 = 0 $$ Solving the quadratic equation for tan 2 θ \tan^2\theta we'll get to: $$ \tan^2\theta = \frac{-1 \pm \sqrt{5}}{2} $$ Which only 1 + 5 2 \frac{-1 + \sqrt{5}}{2} is positive, squaring tan 2 θ \tan^2\theta twice we'll get close to the solution: $$ \tan^8\theta = \frac{7 - 3\sqrt{5}}{2} $$ Passing the 2 2 to the left side we finally get to the required solution: $$ 2\tan^8\theta = 7 - 3\sqrt{5} $$ Finally: $$ a + b + c = 7 + 3 + 5 = 15 $$

Samir Khan
Jul 19, 2013

The given equation can be reduced using the infinite geometric series formula to sin θ cos 2 θ = 1 \displaystyle \frac{\sin\theta}{\cos^2\theta}=1 .

Using basic trigonometric identities, this is equivalent to tan 2 θ 1 tan 2 θ . \displaystyle \tan^2\theta-\frac{1}{\tan^2\theta}.

Squaring, we have tan 4 θ + 1 tan 4 θ = 3. \displaystyle \tan^4\theta+\frac{1}{\tan^4\theta}=3.

Squaring again, tan 8 θ + 1 tan 8 θ = 7. \displaystyle \tan^8\theta+\frac{1}{\tan^8\theta}=7.

This last equation is can be converted to a quadratic in tan 8 θ \tan^8\theta , and solving gives 2 tan 8 θ = 7 3 5 2\tan^8\theta=7-3\sqrt{5} , so the answer is 7+3+5=15.

Bob Bobson
Jul 19, 2013

Since θ \theta is an acute angle we know that sin θ ( 0 , 1 ) \sin \theta \in (0,1) and so the geometric progression n = 0 sin 2 n + 1 θ \sum_{n=0}^\infty \sin^{2n+1}\theta converges and is equal to sin θ 1 sin 2 θ = sin θ cos 2 θ \frac{\sin \theta}{1 - \sin^2\theta} = \frac{\sin\theta}{\cos^2\theta} . We've been told that this value is equal to 1 1 so we have 1 sin 2 θ = sin θ 1 - \sin^2 \theta = \sin \theta and solving this as a quadratic for sin θ \sin \theta gives sin θ = 1 ± 5 2 \sin \theta = \frac{-1 \pm \sqrt{5}}{2} . Since θ \theta is acute it must be the positive root so sin θ = ( 5 1 ) / 2 \sin \theta = (\sqrt 5 - 1)/2 . Now we know that tan 2 θ = sin 2 θ cos 2 θ = sin θ sin θ cos 2 θ = sin θ \tan^2\theta = \frac{\sin^2 \theta}{\cos^2\theta} = \sin\theta \cdot \frac{\sin \theta}{\cos^2 \theta} = \sin \theta . So 2 tan 8 θ = 2 s i n 4 θ = 2 ( 5 1 ) 4 / 16 = 7 3 5 2 \tan^8 \theta = 2 sin^4 \theta = 2 (\sqrt 5 - 1)^4/16 = 7 - 3 \sqrt{5} . Thus the answer is 3 + 5 + 7 = 15 3 + 5 + 7 = \boxed{15} .

Mayank Kaushik
Jul 17, 2013

Given series is as , sin θ + sin 3 θ + sin 5 θ + . . . \sin \theta + \sin ^{3} \theta +\sin ^{5} \theta + ...

it is a GP with a= sin θ \sin \theta & r = sin 2 θ \sin ^{2} \theta so a 1 r = sin θ 1 sin 2 θ = 1 \frac{a}{1-r} = \frac{\sin \theta }{1-\sin ^{2} \theta} = 1 sin 2 θ + sin θ 1 = 0 \sin ^{2} \theta + \sin \theta - 1 = 0 ... (1)

Also, sin θ = cos 2 θ \sin \theta = \cos ^{2} \theta .... (2)

on putting x = sin θ \sin \theta , we get x 2 + x + 1 = 0 x^{2} + x + 1 = 0

and we get x = 1 + 5 2 \frac{-1 +- \sqrt{5}}{2}

from which only x = 1 + 5 2 \frac{-1 + \sqrt{5}}{2} is acceptable

Now 2 tan 8 θ = ( sin 2 θ cos 2 θ ) 4 \tan ^{8}\theta = (\frac{\sin ^{2} \theta}{\cos ^{2} \theta}) ^ 4

on using ...(2) we get

2 tan 8 θ = ( sin 2 θ ) 4 \tan ^{8}\theta = (\sin {2} \theta) ^ {4}

= x 4 x^{4}

= 7 3 5 7 - 3\sqrt{5}

Hence a + b +c = 7 + 3 + 5 = 15

Sanjay Meena
Jul 17, 2013

∑(n=0 to ∞)sin^(2n+1)θ=sinθ+ sin³θ+ sin⁵θ+ sin⁷θ+ ....... ∞

we observe it Si infinite G.P series with common Ratio sin²θ it its value always lies (0 1) so |r|<1

then sum =sinθ/(1-sin²2θ)=1 OR cos²θ= sinθ...................(1)

OR sin²θ+sinθ-1=0-----------------(2)

ON SOLVING WE GET sinθ= (√5 - 1)/2 (NEGATIVE PART REJECTED)

NOW 2 tan⁸θ= 2*sin⁸θ/cos⁸θ

= 2*sin⁸θ/(cos²θ)⁴

=2*SIN^4θ FROM (1)

=2*[ (√5 - 1)/2]^4=

(7 - 3√5 )

SO ANSWER IS 7+3+5=15

Harsa Mitra
Jul 17, 2013

The solution what I have arrived at is: a + b + c = 7 + 3 + 5 = 15

i) Evaluating the given summation ∑sin²ⁿ+¹(Ө) for n = 0 to ∞, This sum S = sin(Ө) + sin³Ө + sin⁵Ө + sin⁷Ө + ....... up to infinity

This is in GP, whose 1st term is sin(Ө) and common ratio is sin²Ө As Ө is an acute angle, sin(Ө) is in (0, 1); so, sin²Ө also in (0, 1) ==> |r| < 1 So the series sum forms infinite sum, which equal = a/(1 - r) = sinӨ/(1 - sin²Ө)

ii) Given sum = 1 ==> sinӨ = 1 - sin²Ө = cos²Ө ------ (1) Rearranging, sin²Ө + sinӨ - 1 = 0

This is a quadratic in sinӨ; solving sin(Ө) = (√5 - 1)/2 ----- (2) [Only positive values is taken; negative value is rejected, since Ө is acute]

iii) tan⁸Ө = sin⁸Ө/cos⁸Ө = sin⁸Ө/(cos²Ө)⁴ But from (1), cos²Ө = sinӨ

Substituting this in the above, it reduces to: tan⁸Ө = sin⁸Ө/sin⁴Ө = sin⁴Ө ----- (3)

iv) From (2), sin(Ө) = (√5 - 1)/2 ==> sin²Ө = [(√5 - 1)/2]² = (3 - √5 )/2

==> sin⁴Ө = [(3 - √5 )/2]² = (7 - 3√5 )/2

v) Hence of the above, 2 tan⁸Ө = 2 sin⁴Ө = 2*[ (7 - 3√5 )/2] = (7 - 3√5 )

==> a−b√c = 7 - 3√5; so a = 7; b = 3 and c = 5

Hence a + b + c = 15

Lily Ye
Jul 17, 2013

Write out the series:

sin θ \sin \theta + sin 3 θ \sin^{3} \theta + sin 5 θ \sin^{5} \theta + sin 7 θ + . . . = 1 \sin^{7} \theta +... = 1

Factor out the sine.

sin θ \sin \theta ( 1 (1 + sin 2 θ \sin^{2} \theta + sin 4 θ \sin^{4} \theta + sin 6 θ + . . . ) = 1 \sin^{6} \theta +...) = 1

Let u = sin θ u=\sin \theta .

u ( 1 + u 2 + u 4 + u 6 + . . . ) = 1 u (1+u^{2}+u^{4}+u^{6}+...) = 1

It's a geometric series now, with common ratio u 2 u^2 .

u ( 1 1 u 2 ) = 1 u (\frac{1}{1-u^{2}}) = 1

u 2 + u 1 = 0 u^{2}+u-1=0

Solve with quadratic formula to get:

sin θ = 1 + 5 2 \sin \theta = \frac{-1+\sqrt{5}}{2}

Only use the positive value because sine ranges from -1 to 1.

Use identities:

sin 2 θ + cos 2 θ = 1 \sin^{2} \theta + \cos^{2} \theta = 1

( 1 + 5 2 ) 2 + cos 2 θ = 1 (\frac{-1+\sqrt{5}}{2})^{2} + \cos^{2} \theta = 1

cos 2 θ = 1 + 5 2 \cos^{2} \theta = \frac{-1+\sqrt{5}}{2}

tan 2 θ = 1 cos 2 θ 1 \tan^{2} \theta = \frac{1}{\cos^{2} \theta} -1

tan 2 θ = 2 1 + 5 1 \tan^{2} \theta = \frac{2}{-1+\sqrt{5}} -1

Square it twice to get

tan 8 θ = 7 3 5 2 \tan^{8} \theta = \frac{7-3 \sqrt{5}}{2}

2 tan 8 θ = 7 3 5 2 \tan^{8} \theta = 7 - 3 \sqrt{5}

7 + 3 + 5 = 15 7+3+5=15

There is no need to expand the expression to find the values. We can see that sin θ 1 sin 2 θ = 1 \frac{\sin \theta}{1-\sin^2 \theta}=1 .

From this we get tan θ = cos θ \tan \theta=\cos \theta .

So 2 ( tan θ ) 8 = 2 ( cos θ ) 8 (\tan \theta)^8=2(\cos \theta)^8

=2 ( 1 sin 2 θ ) 4 (1-\sin^2 \theta)^4 =2 sin 4 θ \sin^4 \theta = 2 ( 1 sin θ ) 2 2(1-\sin \theta)^2 . From this we can get the final expression easily.

Armin Namavari
Jul 16, 2013

We notice that the sum is a geometric series sin θ + sin 3 θ + sin 5 θ + = 1 \sin\theta + \sin^3\theta + \sin^5\theta + \dots = 1 The sum of this infinite series can be expressed as sin θ 1 sin 2 θ = 1 \dfrac{\sin\theta}{1 - \sin^2\theta} = 1 which can be rearranged to the quadratic sin 2 θ + sin θ 1 = 0 \sin^2\theta + \sin\theta - 1 = 0 the positive solution is sin θ = 5 1 2 \sin\theta = \dfrac{\sqrt{5} - 1}{2} Notice also that 1 sin 2 θ = c o s 2 θ 1 - \sin^2\theta = cos^2\theta therefore s i n θ = c o s 2 θ sin\theta = cos^2\theta and 2 tan 8 θ = 2 sin 8 θ ( cos 2 θ ) 4 = 2 sin 8 θ sin 4 θ = 2 sin 4 θ = 2 ( 5 1 2 ) 4 = 7 3 5 2\tan^8\theta\ = 2\dfrac{\sin^8\theta}{(\cos^2\theta)^4} = 2\dfrac{\sin^8\theta}{\sin^4\theta} = 2\sin^4\theta = 2(\dfrac{\sqrt{5} - 1}{2})^4 = 7 - 3\sqrt{5} a + b + c = 15

Vostro Del
Jul 15, 2013

The given equation is:

     sin x+sin^3 x+sin^5 x....=1

     sin x + sin^2 x ( sin x + sin^3 x + sin^5 )=1

     which gives,sin x+sin^2 x=1  or  sin x=cos^2 x   or  tan x = cos x

     on solving sin x = (√5−1)/2 = tan^2 x

     on squaring two times, we get tan^8 x= (7−3√5)/2

So, 2 tan^2 x=7−3√5

So a+b+c=15

We have: sin θ + sin 3 θ + sin 5 θ + . . . = 1 \sin\theta + \sin^3\theta+ \sin^5\theta+...=1 .

Therefore, sin θ + sin 2 θ ( sin θ + sin 3 θ + . . . ) = 1 \sin\theta+\sin^2\theta( \sin\theta + \sin^3\theta+...)=1 or sin θ + sin 2 θ = 1 \sin\theta +\sin^2\theta=1 .

So sin θ = 5 1 2 \sin\theta=\frac{\sqrt{5}-1}{2} .

Because tan θ = sin θ 1 sin 2 θ \tan\theta=\frac{\sin\theta}{\sqrt{1-\sin^2\theta}} = sin θ sin θ = sin θ =\frac{\sin\theta}{\sqrt{\sin\theta }}=\sqrt{\sin\theta}

Hence tan 8 θ = sin 4 θ = 7 3 5 \tan^8\theta=\sin^4\theta=7-3\sqrt{5} .

So the answer is: 7+3+5=15

Sorry, I forgot to type 2 before tan^8 and sin^4 and now I can't modify my solution

Đinh Ngọc Hải - 7 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...