AIME 1986 problem

Algebra Level 4

The polynomial 1 x + x 2 x 3 + + x 16 x 17 1 - x + x^2 - x^3 + \ldots +x^{16} - x^{17} may be written in the form:

a 0 + a 1 y + a 2 y 2 + + a 16 y 16 + a 17 y 17 , a_0 + a_1y + a_2y^2 + \ldots +a_{16}y^{16} + a_{17}y^{17},

where y = x + 1 y=x+1 and a i a_i are constants. Find a 2 a_2 .


The answer is 816.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Prakhar Gupta
Apr 13, 2014

The given equation is : 1 x + x 2 x 3 + x 17 1-x+x^2-x^3+\cdots -x^{17} It is easy to see that it is a GP of 18 18 terms with first term 1 1 and common ratio x -x :

So the above sum can be rewritten as: 1 ( 1 ( x ) ) 18 1 ( x ) \dfrac{1(1-(-x))^{18}}{1-(-x)} = 1 x 18 1 + x =\dfrac{1-x^{18}}{1+x} Now we can replace x x with y 1 y-1 : Hence the sum is rewritten as : 1 ( y 1 ) 18 y \dfrac{1-(y-1)^{18}}{y} Since y 1 y-1 is in the even power hence the term inside can be inverted to 1 y 1-y : Hence the sum becomes: 1 ( 1 y ) 18 y \dfrac{1-(1-y)^{18}}{y} Expanding ( 1 y ) 18 (1-y)^{18} using binomial theorem: 1 1 + ( 18 1 ) y ( 18 2 ) y 2 + ( 18 3 ) y 3 ( 18 18 ) y 18 y \dfrac{1-1+\binom{18}{1}y-\binom{18}{2}y^2+\binom{18}{3}y^3-\cdots-\binom{18}{18}y^{18}}{y} = ( 18 1 ) ( 18 2 ) y + ( 18 3 ) y 2 + ( 18 18 ) y 17 =\binom{18}{1}-\binom{18}{2}y+\binom{18}{3}y^2+\cdots-\binom{18}{18}y^{17} Hence the required answer is ( 18 3 ) = 816. \boxed{\binom{18}{3}=816.}

very nice solution

Mas Mus - 7 years, 1 month ago

Let f ( x ) = n = 0 17 ( x ) n = g ( x ) = n = 0 17 a n y n \quad \displaystyle f(x) = \sum_{n=0}^{17} {(-x)^n} = g(x) = \sum_{n=0}^{17} {a_ny^n} .

Then d f ( x ) d x = d g ( y ) d x = d g ( y ) d y d y d x = d g ( y ) d y \quad \dfrac {df(x)}{dx} = \dfrac {dg(y)}{dx} = \dfrac {dg(y)}{dy} \dfrac {dy}{dx} = \dfrac {dg(y)}{dy} .

Similarly, d 2 f ( x ) d x 2 = d 2 g ( y ) d y 2 \quad \dfrac {d^2f(x)}{dx^2} = \dfrac {d^2g(y)}{dy^2}

We note that d f ( x ) d x = n = 1 17 [ ( 1 ) n n x n 1 ] \displaystyle \quad \dfrac {df(x)}{dx} = \sum_{n=1}^{17} {[(-1)^nnx^{n-1}]} \quad and d 2 f ( x ) d x 2 = n = 2 17 [ ( 1 ) n n ( n 1 ) x n 2 ] \displaystyle \quad \dfrac {d^2f(x)}{dx^2} = \sum_{n=2}^{17} {[(-1)^nn(n-1)x^{n-2}]}

We also know that:

g ( 0 ) = [ d 2 g ( y ) d y 2 ] y = 0 = 2 a 2 = f ( 1 ) = [ d 2 f ( x ) d x 2 ] x = 1 g''(0) = \left[ \dfrac {d^2g(y)}{dy^2} \right]_{y=0} = 2a_2 = f''(-1) = \left[ \dfrac {d^2f(x)}{dx^2} \right]_{x=-1}

= n = 2 17 n ( n 1 ) = n = 1 17 n 2 n = 1 17 n = ( 17 ) ( 18 ) ( 35 ) 6 ( 17 ) ( 18 ) 2 = 1632 = \displaystyle \sum_{n=2}^{17} {n(n-1)} = \sum_{n=1}^{17} {n^2} - \sum_{n=1}^{17} {n} = \dfrac {(17)(18)(35)}{6}-\dfrac {(17)(18)}{2} = 1632

a 2 = 1632 2 = 816 \Rightarrow a_2 = \dfrac {1632}{2} = \boxed{816}

Tried SUM 1 to 5 and found that for SUM 1 to odd n, A(o) = A(n-1), A(1) = A(n-2),, A(2) = A(n-3), etc
Coff. of X^k term in both F(X) and G(Y) must be the same. coff. of X^17 is -1 in F. Hence A(17) = -1
F(-1) = 18, but F(-1) = G(o) = A(o) + o + o + . . . + o...=A(n-1) =A(17 - 1) = A(16)........................A(16) = 18

Expanding (X + 1)^k by Binomial Theorem we get the coff. of X^15 and X^14 for k= 14 to 17.
.........................(X + 1)^14.................(X + 1)^15.....................(X + 1)^16.....................(X + 1)^17
FOR X^15................................................1..........................................16.............................136
for G..................................................1 A(15)..........................16 A(16).....................136 A(17) .....
for G....................................................A(15)..........................16
(18)........................136*(-1) =-1 from F .................................................................................................................................................................A(15)= - 153.


FOR X^15.............1.................................15...............................120..............................680
for G..................1 A(14)........................15 A(15)..................120 A(16).....................680 A(17) .....
for G.................... A(14)..........................15 (-153).................120 (18)........................680*(-1) =-1 from F
..................................................................................................................................A(2) = A(14) =816

Danang AchSa
Mar 13, 2014

Using the geometric series formula, 1 - x + x^2 + \cdots - x^{17} = \frac {1 - x^{18}}{1 + x} = \frac {1-x^{18}}{y}. Since x = y - 1, this becomes \frac {1-(y - 1)^{18}}{y}. We want a_2, which is the coefficient of the y^3 term in -(y - 1)^{18} (because the y in the denominator reduces the degrees in the numerator by 1). By the binomial theorem that is (-1) \cdot (-1)^{15}{18 \choose 3} = \boxed{816}.

Please check your LaTeX

Star Light - 7 years, 2 months ago

Yeah.....its complicated

Max B - 7 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...