The polynomial 1 − x + x 2 − x 3 + … + x 1 6 − x 1 7 may be written in the form:
a 0 + a 1 y + a 2 y 2 + … + a 1 6 y 1 6 + a 1 7 y 1 7 ,
where y = x + 1 and a i are constants. Find a 2 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
very nice solution
Let f ( x ) = n = 0 ∑ 1 7 ( − x ) n = g ( x ) = n = 0 ∑ 1 7 a n y n .
Then d x d f ( x ) = d x d g ( y ) = d y d g ( y ) d x d y = d y d g ( y ) .
Similarly, d x 2 d 2 f ( x ) = d y 2 d 2 g ( y )
We note that d x d f ( x ) = n = 1 ∑ 1 7 [ ( − 1 ) n n x n − 1 ] and d x 2 d 2 f ( x ) = n = 2 ∑ 1 7 [ ( − 1 ) n n ( n − 1 ) x n − 2 ]
We also know that:
g ′ ′ ( 0 ) = [ d y 2 d 2 g ( y ) ] y = 0 = 2 a 2 = f ′ ′ ( − 1 ) = [ d x 2 d 2 f ( x ) ] x = − 1
= n = 2 ∑ 1 7 n ( n − 1 ) = n = 1 ∑ 1 7 n 2 − n = 1 ∑ 1 7 n = 6 ( 1 7 ) ( 1 8 ) ( 3 5 ) − 2 ( 1 7 ) ( 1 8 ) = 1 6 3 2
⇒ a 2 = 2 1 6 3 2 = 8 1 6
Tried SUM 1 to 5 and found that for SUM 1 to odd n, A(o) = A(n-1), A(1) = A(n-2),, A(2) = A(n-3), etc
Coff. of X^k term in both F(X) and G(Y) must be the same. coff. of X^17 is -1 in F. Hence A(17) = -1
F(-1) = 18, but F(-1) = G(o) = A(o) + o + o + . . . + o...=A(n-1) =A(17 - 1) = A(16)........................A(16) = 18
Expanding (X + 1)^k by Binomial Theorem we get the coff. of X^15 and X^14 for k= 14 to 17.
.........................(X + 1)^14.................(X + 1)^15.....................(X + 1)^16.....................(X + 1)^17
FOR X^15................................................1..........................................16.............................136
for G..................................................1
A(15)..........................16
A(16).....................136
A(17) .....
for G....................................................A(15)..........................16
(18)........................136*(-1) =-1 from F
.................................................................................................................................................................A(15)= - 153.
FOR X^15.............1.................................15...............................120..............................680
for G..................1
A(14)........................15
A(15)..................120
A(16).....................680
A(17) .....
for G.................... A(14)..........................15
(-153).................120
(18)........................680*(-1) =-1 from F
..................................................................................................................................A(2) = A(14) =816
Using the geometric series formula, 1 - x + x^2 + \cdots - x^{17} = \frac {1 - x^{18}}{1 + x} = \frac {1-x^{18}}{y}. Since x = y - 1, this becomes \frac {1-(y - 1)^{18}}{y}. We want a_2, which is the coefficient of the y^3 term in -(y - 1)^{18} (because the y in the denominator reduces the degrees in the numerator by 1). By the binomial theorem that is (-1) \cdot (-1)^{15}{18 \choose 3} = \boxed{816}.
Please check your LaTeX
Yeah.....its complicated
Problem Loading...
Note Loading...
Set Loading...
The given equation is : 1 − x + x 2 − x 3 + ⋯ − x 1 7 It is easy to see that it is a GP of 1 8 terms with first term 1 and common ratio − x :
So the above sum can be rewritten as: 1 − ( − x ) 1 ( 1 − ( − x ) ) 1 8 = 1 + x 1 − x 1 8 Now we can replace x with y − 1 : Hence the sum is rewritten as : y 1 − ( y − 1 ) 1 8 Since y − 1 is in the even power hence the term inside can be inverted to 1 − y : Hence the sum becomes: y 1 − ( 1 − y ) 1 8 Expanding ( 1 − y ) 1 8 using binomial theorem: y 1 − 1 + ( 1 1 8 ) y − ( 2 1 8 ) y 2 + ( 3 1 8 ) y 3 − ⋯ − ( 1 8 1 8 ) y 1 8 = ( 1 1 8 ) − ( 2 1 8 ) y + ( 3 1 8 ) y 2 + ⋯ − ( 1 8 1 8 ) y 1 7 Hence the required answer is ( 3 1 8 ) = 8 1 6 .