The polynomial 1 − x + x 2 − x 3 + . . . . . − x 1 7
may be written in the form a 0 + a 1 y + a 2 y 2 . . . . . + a 1 7 y 1 7
w h e r e y = x + 1 and a i s are constant then find a 2
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
absolutely right
Let f ( x ) = 1 − x + x 2 . . . − x 1 7 , and g ( y ) = a 0 + a 1 y . . . + a 1 7 y 1 7 .
g ( x + 1 ) = f ( x ) , so g ′ ′ ( x + 1 ) = f ′ ′ ( x ) . Putting x = − 1 , g ′ ′ ( 0 ) = f ′ ′ ( − 1 ) .
So 2 a 2 = 2 . 1 + 3 . 2 + . . . + 1 7 . 1 6 = ∑ i = 1 1 6 ( i 2 + i ) = 6 1 6 . 1 7 . 3 3 + 2 1 6 . 1 7 = 8 . 1 7 . 1 1 + 8 . 1 7 = 8 . 1 7 . 1 2
So a 2 = 8 . 1 7 . 6 = 8 1 6 .
This problem was posted before by Sharky Kesa . See here . I provided solution to it two days ago. See below.
Let f ( x ) = n = 0 ∑ 1 7 ( − x ) n = g ( x ) = n = 0 ∑ 1 7 a n y n .
Then d x d f ( x ) = d x d g ( y ) = d y d g ( y ) d x d y = d y d g ( y ) .
Similarly, d x 2 d 2 f ( x ) = d y 2 d 2 g ( y )
We note that d x d f ( x ) = n = 1 ∑ 1 7 [ ( − 1 ) n n x n − 1 ] and d x 2 d 2 f ( x ) = n = 2 ∑ 1 7 [ ( − 1 ) n n ( n − 1 ) x n − 2 ]
We also know that:
g ′ ′ ( 0 ) = [ d y 2 d 2 g ( y ) ] y = 0 = 2 a 2 = f ′ ′ ( − 1 ) = [ d x 2 d 2 f ( x ) ] x = − 1
= n = 2 ∑ 1 7 n ( n − 1 ) = n = 1 ∑ 1 7 n 2 − n = 1 ∑ 1 7 n = 6 ( 1 7 ) ( 1 8 ) ( 3 5 ) − 2 ( 1 7 ) ( 1 8 ) = 1 6 3 2
⇒ a 2 = 2 1 6 3 2 = 8 1 6
If f ( x ) = 1 − x + x 2 − x 3 + . . . . . − x 1 7
Then f ( x ) = f ( y − 1 ) = 1 − ( y − 1 ) + ( y − 1 ) 2 − ( y − 1 ) 3 + . . . . . − ( y − 1 ) 1 7 =
f ( x ) = 1 + ( 1 − y ) + ( y − 1 ) 2 + ( 1 − y ) 3 + . . . . . + ( 1 − y ) 1 7
Thus
a 2 = ( 2 2 ) + ( 2 3 ) + ( 2 4 ) + . . . ( 2 1 7 ) = ( 3 1 8 ) = 8 1 6
@Rishabh Jain , I posted the exact same problem AIME 1986 Problem .
Problem Loading...
Note Loading...
Set Loading...
First note that the polynomial can be written as
1 + ( − x ) + ( − x ) 2 + ( − x ) 3 + . . . . + ( − x ) 1 7 = 1 − ( − x ) 1 − ( − x ) 1 8 = 1 + x 1 − x 1 8 .
Now let y = 1 + x . The polynomial can now be written as
y 1 − ( y − 1 ) 1 8 .
So to find the coefficient of y 2 we will first need to find the coefficient of y 3 in the expansion of ( y − 1 ) 1 8 . This will be
( 3 1 8 ) ∗ ( − 1 ) 1 5 = − ( 3 1 8 ) ,
and so the coefficient of y 2 in y 1 − ( y − 1 ) 1 8 will be
( 3 1 8 ) = 8 1 6 .