AIME 1986

Algebra Level 4

The polynomial 1 x + x 2 x 3 + . . . . . x 17 1-x+{x}^{2}-{x}^{3}+.....-{x}^{17}

may be written in the form a 0 + a 1 y + a 2 y 2 . . . . . + a 17 y 17 {a}_{0}+{a}_{1}y+{a}_{2}{y}^{2}.....+{a}_{17}{y}^{17}

w h e r e y = x + 1 where \quad y=x+1 and a i s {a}_{i}s are constant then find a 2 {a}_{2}


The answer is 816.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

First note that the polynomial can be written as

1 + ( x ) + ( x ) 2 + ( x ) 3 + . . . . + ( x ) 17 = 1 ( x ) 18 1 ( x ) = 1 x 18 1 + x 1 + (-x) + (-x)^{2} + (-x)^{3} + .... + (-x)^{17} = \dfrac{1 - (-x)^{18}}{1 - (-x)} = \dfrac{1 - x^{18}}{1 + x} .

Now let y = 1 + x y = 1 + x . The polynomial can now be written as

1 ( y 1 ) 18 y \dfrac{1 - (y - 1)^{18}}{y} .

So to find the coefficient of y 2 y^{2} we will first need to find the coefficient of y 3 y^{3} in the expansion of ( y 1 ) 18 (y - 1)^{18} . This will be

( 18 3 ) ( 1 ) 15 = ( 18 3 ) \dbinom{18}{3} * (-1)^{15} = -\dbinom{18}{3} ,

and so the coefficient of y 2 y^2 in 1 ( y 1 ) 18 y \dfrac{1 - (y - 1)^{18}}{y} will be

( 18 3 ) = 816 \dbinom{18}{3} = \boxed{816} .

absolutely right

Rishabh Jain - 6 years, 10 months ago
Ww Margera
Aug 22, 2014

Let f ( x ) = 1 x + x 2 . . . x 17 f(x) = 1 - x + x^2 ... -x^{17} , and g ( y ) = a 0 + a 1 y . . . + a 17 y 17 g(y) = a_0 + a_{1}y ... + a_{17}y^{17} .

g ( x + 1 ) = f ( x ) g(x + 1) = f(x) , so g ( x + 1 ) = f ( x ) g''(x+1) = f''(x) . Putting x = 1 x = -1 , g ( 0 ) = f ( 1 ) g''(0) = f''(-1) .

So 2 a 2 = 2.1 + 3.2 + . . . + 17.16 = i = 1 16 ( i 2 + i ) = 16.17.33 6 + 16.17 2 = 8.17.11 + 8.17 = 8.17.12 2a_2 = 2.1 + 3.2 + ... + 17.16 = \sum_{i=1}^{16}(i^2 + i) = \frac{16.17.33}{6} + \frac{16.17}{2} = 8.17.11 + 8.17 = 8.17.12

So a 2 = 8.17.6 = 816 a_2 = 8.17.6 = 816 .

This problem was posted before by Sharky Kesa . See here . I provided solution to it two days ago. See below.

Let f ( x ) = n = 0 17 ( x ) n = g ( x ) = n = 0 17 a n y n \quad \displaystyle f(x) = \sum_{n=0}^{17} {(-x)^n} = g(x) = \sum_{n=0}^{17} {a_ny^n} .

Then d f ( x ) d x = d g ( y ) d x = d g ( y ) d y d y d x = d g ( y ) d y \quad \dfrac {df(x)}{dx} = \dfrac {dg(y)}{dx} = \dfrac {dg(y)}{dy} \dfrac {dy}{dx} = \dfrac {dg(y)}{dy} .

Similarly, d 2 f ( x ) d x 2 = d 2 g ( y ) d y 2 \quad \dfrac {d^2f(x)}{dx^2} = \dfrac {d^2g(y)}{dy^2}

We note that d f ( x ) d x = n = 1 17 [ ( 1 ) n n x n 1 ] \displaystyle \quad \dfrac {df(x)}{dx} = \sum_{n=1}^{17} {[(-1)^nnx^{n-1}]} \quad and d 2 f ( x ) d x 2 = n = 2 17 [ ( 1 ) n n ( n 1 ) x n 2 ] \displaystyle \quad \dfrac {d^2f(x)}{dx^2} = \sum_{n=2}^{17} {[(-1)^nn(n-1)x^{n-2}]}

We also know that:

g ( 0 ) = [ d 2 g ( y ) d y 2 ] y = 0 = 2 a 2 = f ( 1 ) = [ d 2 f ( x ) d x 2 ] x = 1 g''(0) = \left[ \dfrac {d^2g(y)}{dy^2} \right]_{y=0} = 2a_2 = f''(-1) = \left[ \dfrac {d^2f(x)}{dx^2} \right]_{x=-1}

= n = 2 17 n ( n 1 ) = n = 1 17 n 2 n = 1 17 n = ( 17 ) ( 18 ) ( 35 ) 6 ( 17 ) ( 18 ) 2 = 1632 = \displaystyle \sum_{n=2}^{17} {n(n-1)} = \sum_{n=1}^{17} {n^2} - \sum_{n=1}^{17} {n} = \dfrac {(17)(18)(35)}{6}-\dfrac {(17)(18)}{2} = 1632

a 2 = 1632 2 = 816 \Rightarrow a_2 = \dfrac {1632}{2} = \boxed{816}

Paola Ramírez
Jan 9, 2015

If f ( x ) = 1 x + x 2 x 3 + . . . . . x 17 f(x)=1-x+{x}^{2}-{x}^{3}+.....-{x}^{17}

Then f ( x ) = f ( y 1 ) = 1 ( y 1 ) + ( y 1 ) 2 ( y 1 ) 3 + . . . . . ( y 1 ) 17 f(x)=f(y-1)=1-(y-1)+(y-1)^{2}-(y-1)^{3}+.....-(y-1)^{17} =

f ( x ) = 1 + ( 1 y ) + ( y 1 ) 2 + ( 1 y ) 3 + . . . . . + ( 1 y ) 17 f(x)=1+(1-y)+(y-1)^{2}+(1-y)^{3}+.....+(1-y)^{17}

Thus

a 2 = ( 2 2 ) + ( 3 2 ) + ( 4 2 ) + . . . ( 17 2 ) = ( 18 3 ) = 816 a_{2}=\binom{2}{2}+\binom{3}{2}+\binom{4}{2}+...\binom{17}{2}=\binom{18}{3}=\boxed{816}

Sharky Kesa
Sep 14, 2014

@Rishabh Jain , I posted the exact same problem AIME 1986 Problem .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...