Let x and y be real numbers satisfying x 4 y 5 + y 4 x 5 = 8 1 0 and x 3 y 6 + y 3 x 6 = 9 4 5 . Evaluate 2 x 3 + ( x y ) 3 + 2 y 3 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I wonder if my solution is any better...
Assume without loss of happiness and generality that y ≥ x
Then, from the above problem, x 4 y 5 + x 5 y 4 = 8 1 0 , ( x 4 y 4 ) ( x + y ) = 8 1 0 , x + y = x 4 y 4 8 1 0
Similarly, x 3 y 6 + x 6 y 3 = 9 4 5 , ( x 3 y 3 ) ( x + y ) ( x 2 − x y + y 2 ) = 9 4 5 , and since x + y = x 4 y 4 8 1 0 ,
( x 3 y 3 ) ( x + y ) ( x 2 − x y + y 2 ) = 9 4 5
x 4 y 4 8 1 0 ⋅ ( x 3 y 3 ) ( x 2 − x y + y 2 ) = 9 4 5
x y x 2 − x y + y 2 = 8 1 0 9 4 5
Which gives us 6 x 2 − 1 3 x y + 6 y 2 = 0
( 3 x − 2 y ) ( 2 x − 3 y ) = 0
Since y ≥ x , 3 x − 2 y = 0 , and y = 2 3 x
Substituting, ( x 4 y 4 ) ( x + y ) = 8 1 0 , ( 3 2 8 1 x 8 ) ( 2 5 x = 8 1 0 )
This gives us x 9 = 6 4 , x 3 = 4 , and similarly, y 3 = 8 2 7 x 3 , y 3 = 2 2 7
Plugging in the values, 2 x 3 + x 3 y 3 + 2 y 3 = 2 ( 4 ) + ( 4 ) ( 2 2 7 ) + 2 ( 2 2 7 ) = 8 9
As conclusion, the answer is 89, and since my solution is longer than Chew-Seong Cheong's, my solution is no better T.T </3
The same way!
x 4 ∗ y 4 ( x + y ) = 8 1 0 = 3 3 ∗ 5 ∗ 6 . . . . . . . . . . ( 1 ) x 3 ∗ y 3 ∗ ( x 3 + y 3 ) = x 3 ∗ y 3 ∗ ( x + y ) ( x 2 − x y + y 2 ) = 3 3 ∗ 5 ∗ 7 . . . . . . . . . . ( 2 ) ∴ ( 1 ) ( 2 ) = x y x 2 − x y + y 2 = 6 7 . ⟹ x 2 − 6 1 3 ∗ x y + y 2 . W L O G y ≥ x , s o l v i n g t h e q u a d r a t i c y = 2 3 ∗ x . S u b s t i t u t i n g t h i s i n ( 2 ) , x 9 ∗ ( 2 3 ) 3 ∗ ( 1 + ( 2 3 ) 3 ) = 3 3 ∗ 5 ∗ 7 ∴ x 9 = 8 ∗ 8 , ⟹ x 3 = 4 , a n d y 3 = 4 ∗ ( 2 3 ) 3 ∗ x 3 = 2 2 7 ∗ x 3 . \therefor 2 x 3 + x y + 2 y 3 = 2 ∗ ( 4 + 2 2 7 ) + 4 ∗ 2 2 7 = 8 9 .
Problem Loading...
Note Loading...
Set Loading...
{ x 4 y 5 + y 4 x 5 = ( x y ) 4 ( x + y ) = 8 1 0 x 3 y 6 + y 6 x 3 = ( x y ) 3 ( x 3 + y 3 ) = ( x y ) 3 ( x + y ) ( x 2 + y 2 − x y ) = 9 4 5 . . . ( 1 ) . . . ( 2 )
( 1 ) ( 2 ) : x y x 2 + y 2 − x y x 2 + y 2 − x y x 2 + y 2 Since ( x + y ) 2 ⇒ x + y ( 1 ) : ( x y ) 4 ( x + y ) ( x y ) 4 ( 6 5 x y ) ( x y ) 2 9 ⇒ ( x y ) 3 ( 2 ) : ( x y ) 3 ( x 3 + y 3 ) 5 4 ( x 3 + y 3 ) ⇒ x 3 + y 3 ⇒ 2 x 3 + ( x y ) 3 + 2 y 3 = 8 1 0 9 4 5 = 6 7 x y = 6 7 x y + x y = 6 1 3 x y = x 2 + y 2 + 2 x y = 6 1 3 x y + 2 x y = 6 2 5 x y = 6 5 x y = 8 1 0 = 8 1 0 = 1 6 2 6 = ( 1 6 2 6 ) 9 2 × 3 = 3 2 3 3 9 = 5 4 = 9 4 5 = 9 4 5 = 2 3 5 = 3 5 + 5 4 = 8 9