AIME 2015 Problem 14

Algebra Level 4

Let x x and y y be real numbers satisfying x 4 y 5 + y 4 x 5 = 810 x^4y^5+y^4x^5=810 and x 3 y 6 + y 3 x 6 = 945 x^3y^6+y^3x^6=945 . Evaluate 2 x 3 + ( x y ) 3 + 2 y 3 2x^3+(xy)^3+2y^3 .


Try more problems of AIME from this set AIME 2015


The answer is 89.0000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Dec 15, 2015

{ x 4 y 5 + y 4 x 5 = ( x y ) 4 ( x + y ) = 810 . . . ( 1 ) x 3 y 6 + y 6 x 3 = ( x y ) 3 ( x 3 + y 3 ) = ( x y ) 3 ( x + y ) ( x 2 + y 2 x y ) = 945 . . . ( 2 ) \begin{cases} x^4y^5+y^4x^5 = (xy)^4(x+y) = 810 &...(1) \\ x^3y^6+y^6x^3 = (xy)^3 (x^3+y^3) =(xy)^3(x+y) (x^2+y^2-xy) = 945 &...(2) \end{cases}

( 2 ) ( 1 ) : x 2 + y 2 x y x y = 945 810 x 2 + y 2 x y = 7 6 x y x 2 + y 2 = 7 6 x y + x y = 13 6 x y Since ( x + y ) 2 = x 2 + y 2 + 2 x y = 13 6 x y + 2 x y = 25 6 x y x + y = 5 6 x y ( 1 ) : ( x y ) 4 ( x + y ) = 810 ( x y ) 4 ( 5 6 x y ) = 810 ( x y ) 9 2 = 162 6 ( x y ) 3 = ( 162 6 ) 2 9 × 3 = 2 3 3 9 3 = 54 ( 2 ) : ( x y ) 3 ( x 3 + y 3 ) = 945 54 ( x 3 + y 3 ) = 945 x 3 + y 3 = 35 2 2 x 3 + ( x y ) 3 + 2 y 3 = 35 + 54 = 89 \begin{aligned} \frac{(2)}{(1)}: \quad \frac{x^2+y^2-xy}{xy} & = \frac{945}{810} \\ x^2+y^2-xy & = \frac{7}{6} xy \\ x^2+y^2 & = \frac{7}{6} xy + xy = \frac{13}{6}xy \\ \text{Since } (x+y)^2 & = x^2 + y^2 + 2xy = \frac{13}{6}xy + 2xy = \frac{25}{6}xy \\ \Rightarrow x + y & = \frac{5}{\sqrt{6}}\sqrt{xy} \\ (1): \quad \quad (xy)^4(x+y) & = 810 \\ (xy)^4 \left( \frac{5}{\sqrt{6}}\sqrt{xy} \right) & = 810 \\ (xy)^\frac{9}{2} & = 162\sqrt{6} \\ \Rightarrow (xy)^3 & = \left(162\sqrt{6}\right)^{\frac{2}{9}\times 3} = \sqrt[3]{2^33^9} = 54 \\ (2): \quad \quad (xy)^3 (x^3+y^3) & = 945 \\ 54 (x^3+y^3) & = 945 \\ \Rightarrow x^3 + y^3 & = \frac{35}{2} \\ \Rightarrow 2x^3 + (xy)^3 + 2y^3 & = 35 + 54 = \boxed{89} \end{aligned}

Manuel Kahayon
Jan 2, 2016

I wonder if my solution is any better...

Assume without loss of happiness and generality that y x y \geq x

Then, from the above problem, x 4 y 5 + x 5 y 4 = 810 x^4y^5+x^5y^4 = 810 , ( x 4 y 4 ) ( x + y ) = 810 (x^4y^4)(x+y) = 810 , x + y = 810 x 4 y 4 x+y = \frac{810}{x^4y^4}

Similarly, x 3 y 6 + x 6 y 3 = 945 x^3y^6+x^6y^3=945 , ( x 3 y 3 ) ( x + y ) ( x 2 x y + y 2 ) = 945 (x^3y^3)(x+y)(x^2-xy+y^2)=945 , and since x + y = 810 x 4 y 4 x+y = \frac{810}{x^4y^4} ,

( x 3 y 3 ) ( x + y ) ( x 2 x y + y 2 ) = 945 (x^3y^3)(x+y)(x^2-xy+y^2)=945

810 ( x 3 y 3 ) ( x 2 x y + y 2 ) x 4 y 4 = 945 \frac{810 \cdot (x^3y^3)(x^2-xy+y^2)}{x^4y^4}=945

x 2 x y + y 2 x y = 945 810 \frac{x^2-xy+y^2}{xy} = \frac {945}{810}

Which gives us 6 x 2 13 x y + 6 y 2 = 0 6x^2-13xy+6y^2=0

( 3 x 2 y ) ( 2 x 3 y ) = 0 (3x-2y)(2x-3y) = 0

Since y x y \geq x , 3 x 2 y = 0 3x-2y = 0 , and y = 3 x 2 y = \frac{3x}{2}

Substituting, ( x 4 y 4 ) ( x + y ) = 810 (x^4y^4)(x+y) = 810 , ( 81 x 8 32 ) ( 5 x 2 = 810 ) (\frac{81x^8}{32})(\frac{5x}{2} = 810)

This gives us x 9 = 64 , x 3 = 4 x^9 = 64, x^3 = 4 , and similarly, y 3 = 27 x 3 8 , y 3 = 27 2 y^3 = \frac{27 x^3}{8}, y^3 = \frac{27}{2}

Plugging in the values, 2 x 3 + x 3 y 3 + 2 y 3 = 2 ( 4 ) + ( 4 ) ( 27 2 ) + 2 ( 27 2 ) = 89 2x^3+x^3y^3+2y^3 = 2(4)+(4)(\frac{27}{2})+2(\frac{27}{2})=89

As conclusion, the answer is 89, and since my solution is longer than Chew-Seong Cheong's, my solution is no better T.T </3

The same way!

Luffa alsadie - 5 years, 5 months ago

Log in to reply

That's a little comforting... XD

Manuel Kahayon - 5 years, 5 months ago

x 4 y 4 ( x + y ) = 810 = 3 3 5 6.......... ( 1 ) x 3 y 3 ( x 3 + y 3 ) = x 3 y 3 ( x + y ) ( x 2 x y + y 2 ) = 3 3 5 7.......... ( 2 ) ( 2 ) ( 1 ) = x 2 x y + y 2 x y = 7 6 . x 2 13 6 x y + y 2 . W L O G y x , s o l v i n g t h e q u a d r a t i c y = 3 2 x . S u b s t i t u t i n g t h i s i n ( 2 ) , x 9 ( 3 2 ) 3 ( 1 + ( 3 2 ) 3 ) = 3 3 5 7 x 9 = 8 8 , x 3 = 4 , a n d y 3 = 4 ( 3 2 ) 3 x 3 = 27 2 x 3 . \therefor 2 x 3 + x y + 2 y 3 = 2 ( 4 + 27 2 ) + 4 27 2 = 89. x^4*y^4(x+y)=810=3^3*5*6..........(1)\\ x^3*y^3*(x^3+y^3) =x^3*y^3*(x+y)(x^2-xy+y^2)=3^3*5*7..........(2)\\ \therefore\ \dfrac{(2)}{(1)}= \dfrac{x^2-xy+y^2}{xy}=\frac 7 6.\\ \implies\ \ \ x^2-\frac {13} 6*xy+y^2.\\ WLOG\ y\geq x,\ solving\ the\ quadratic\ \ y=\frac 3 2*x.\\ Substituting\ this\ in\ (2),\ \ \ x^9*(\frac 3 2)^3*(1+ (\frac 3 2)^3\ )=3^3*5*7\\ \therefore\ x^9=8*8,\ \ \implies\ \color{#3D99F6}{x^3=4,\ \ and\ \ y^3}=4*(\frac 3 2)^3*x^3=\color{#3D99F6}{\frac{27} 2*x^3.}\\ \therefor\ \ 2x^3+xy+2y^3=2*(4+\frac {27} 2)+4*\frac {27} 2= \Large\ \ \ \color{#D61F06}{89}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...