AIME 2015 Problem 4

Geometry Level 3

In an isosceles trapezoid, the parallel bases have lengths log 3 \log 3 and log 192 \log 192 , and the altitude to these bases has length log 16 \log 16 . The perimeter of the trapezoid can be written in the form log 2 p 3 q \log 2^p 3^q , where p p and q q are positive integers. Find p + q p + q .


Try more problems of AIME from this set AIME 2015


The answer is 18.00000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chris Callahan
Dec 5, 2015

In the picture shown the two parallel bases are segments AB and CD. The two congruent sides of the trapezoid are segments AD and BC. Segments AE and BF are both altitudes to the bases.

It is given that AB=log 3, and that CD=log 192. Since AD and BC are unknown we will say they are equal to x.

Let the equal sides be S. X and Y the parallel sides. A the altitude.      O the angle at the base Y. Y X 2 = S C o s 0. A = S S i n O . S = A S i n O , A n d O = T a n 1 A Y X 2 B u t A Y X 2 = l o g 2 4 l o g 192 l o g 3 2 = l o g 2 4 l o g 64 2 = l o g 2 4 l o g 2 3 O = T a n 1 4 3 = S i n 1 4 5 . S = l o g 2 4 4 5 = l o g 2 5 . P e r i m e t e r = 2 S + X + Y = 2 l o g 2 5 + l o g 3 + ( l o g 64 + l o g 3 ) = l o g { 2 16 3 2 } = l o g { 2 p 3 q } p + q = 18 \text{Let the equal sides be S. X and Y the parallel sides. A the altitude.} ~~~~~\text{ O the angle at the base Y. } \\ \dfrac {Y - X} 2=S*Cos 0. ~~ A=S*SinO. ~~\implies ~~~~~~~ \color{#3D99F6}{S=\dfrac A {Sin O}},\\ And ~~ O=Tan^{ - 1} \dfrac {A} {\frac{Y - X}{2} } ~~~~~ But \dfrac {A} {\frac{Y - X}{2} } =\dfrac {log2^4} {\frac{log192 - log3}{2} }=\dfrac {log2^4} {\frac{log64}{2} }=\dfrac {log2^4} {log2^3}\\ \therefore ~ O= Tan^{ - 1}\dfrac4 3=Sin^{ - 1}\dfrac 4 5. ~~~~ \implies ~S=\dfrac{log2^4}{\frac 4 5}=log2^5.\\ \therefore ~ Perimeter = 2S+X+Y =2log2^5+log3+(log64+log3) =log\{2^{16}3^2\}= log\{2^p3^q\}\\ p + q= \Large \color{#D61F06}{18}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...