AIME I

Algebra Level pending

Let P ( x ) P(x) be a quadratic polynomial with real coefficients satisfying:

x 2 2 x + 2 P ( x ) 2 x 2 4 x + 3 x^2-2x+2 \le P(x) \le 2x^2-4x+3

for all real numbers x x and suppose P ( 11 ) = 181 P(11)= 181 .

Find P ( 16 ) = ? P(16)=?

406 408 410 405 409

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 26, 2017

x 2 2 x + 2 P ( x ) 2 x 2 4 x + 3 ( x 1 ) 2 + 1 P ( x ) 2 ( x 1 ) 2 + 1 ( x 1 ) 2 + 1 a ( x 1 ) 2 + 1 2 ( x 1 ) 2 + 1 where 1 < a < 2 \begin{aligned} x^2-2x + 2 \le P(x&) \le 2x^2-4x+3 \\ (x-1)^2 + 1 \le P(x&) \le 2(x-1)^2 + 1 \\ \implies (x-1)^2 + 1 \le {\color{#3D99F6}a}(x-1&)^2 + 1 \le 2(x-1)^2 + 1 & \small \color{#3D99F6} \text{where }1 < a < 2 \end{aligned}

Now, we have:

P ( x ) = a ( x 1 ) 2 + 1 P ( 11 ) = 181 100 a + 1 = 181 a = 9 5 P ( x ) = 9 5 ( x 1 ) 2 + 1 P ( 16 ) = 9 5 ( 16 1 ) 2 + 1 = 406 \begin{aligned} P(x) & = a(x-1)^2 + 1 \\ P(11) & = 181 \\ \implies 100a+1 & = 181 \\ \implies a & = \frac 95 \\ \implies P(x) & = \frac 95 (x-1)^2 + 1 \\ P(16) & = \frac 95 (16-1)^2 + 1 = \boxed{406} \end{aligned}

Thank you so much.

Hana Wehbi - 4 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...