AIME Problem 4

Geometry Level 4

In the diagram below, A B C D ABCD is a square. Point E E is the midpoint of A D \overline{AD} . Points F F and G G lie on C E \overline{CE} , and H H and J J lie on A B \overline{AB} and B C \overline{BC} , respectively, so that F G H J FGHJ is a square. Points K K and L L lie on G H \overline{GH} , and M M and N N lie on A D \overline{AD} and A B \overline{AB} , respectively, so that K L M N KLMN is a square. The area of K L M N KLMN is 99. Find the area of F G H J FGHJ .

This problem is part of this set .


The answer is 539.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Mar 21, 2015

We note that C D E J F C H B J N K H M A N \triangle CDE \equiv \triangle JFC \equiv \triangle HBJ \equiv \triangle NKH \equiv \triangle MAN are similar triangles with side lengths in the ratio of 1 : 2 : 5 1:2:\sqrt{5} .

Now, let the side lengths of square A B C D ABCD , K L M N KLMN and F G H J FGHJ be a a , b = 99 = 3 11 b=\sqrt{99} = 3\sqrt{11} and x x respectively. Then, we have:

a = A B = A N + N H + H B = 1 5 b + 5 2 b + 2 5 x a = \overline{AB} = \overline{AN} + \overline{NH} + \overline{HB} = \frac {1}{\sqrt{5}}b + \frac {\sqrt{5}}{2}b + \frac {2}{\sqrt{5}}x

a = B C = B J + J C = 1 5 x + 5 2 x a = \overline{BC} = \overline{BJ} + \overline{JC} = \frac {1}{\sqrt{5}}x + \frac {\sqrt{5}}{2}x

Equating the two equations, we have:

1 5 b + 5 2 b + 2 5 x = 1 5 x + 5 2 x 1 5 x + 5 2 x 2 5 x = 1 5 b + 5 2 b 5 2 x 1 5 x = 1 5 b + 5 2 b ( 5 2 2 5 ) x = ( 2 + 5 2 5 ) b 3 x = 7 b x = 7 11 \begin{aligned} \frac {1}{\sqrt{5}}b + \frac {\sqrt{5}}{2}b + \frac {2}{\sqrt{5}}x & = \frac {1}{\sqrt{5}}x + \frac {\sqrt{5}}{2}x \\ \frac {1}{\sqrt{5}}x + \frac {\sqrt{5}}{2}x - \frac {2}{\sqrt{5}}x & = \frac {1}{\sqrt{5}}b + \frac {\sqrt{5}}{2}b \\ \frac {\sqrt{5}}{2}x - \frac {1}{\sqrt{5}}x & = \frac {1}{\sqrt{5}}b + \frac {\sqrt{5}}{2}b \\ \left(\frac {5-2}{2\sqrt{5}}\right) x & = \left(\frac {2+5}{2\sqrt{5}}\right) b \\ 3x & = 7 b \\ \Rightarrow x & = 7\sqrt{11} \\ \end{aligned}

The area of square F G H J = x 2 = 49 × 11 = 539 FGHJ = x^2 = 49 \times 11 = \boxed{539}

A l l s h a v e s i d e s i n r a t i o o f 1 : 2 : 5 . L e t A B = B C = p , B J = n , A M = m . H J = 5 n . . . . . ( 1 ) J G = J C 2 5 = ( p n ) 2 5 . . . ( 2 ) ( 1 ) = ( 2 ) , 5 n = ( p n ) 2 5 , n = 2 p 7 . . . ( 3 ) H B = 2 n = 4 p 7 . . . . ( 4 ) A l s o N M = 5 m . . . . . . . . . ( 5 ) U s i n g ( 4 ) , N K = N H 2 5 = ( A B A N H B ) 2 5 = ( p m 4 p 7 ) 2 5 = ( 3 p 7 m ) 2 5 . . . . ( 6 ) ( 5 ) = ( 6 ) , 5 m = ( ( 3 p 7 m ) 2 5 , m = 6 p 7 2 . . . ( 7 ) F r o m ( 3 ) a n d ( 7 ) A r e a F G H J = 5 ( 2 p ) 2 7 2 5 ( 6 p ) 2 4 9 2 99 = 539 You method is better. I have given above just little different method. We can use analytical geometry also. All ~~\triangle s ~~have~~ sides~~in ~~ratio~~of~~1 : 2: \sqrt5.\\ Let~AB=BC=p,~~BJ=n,~~AM=m.\\\therefore HJ=\sqrt5n.....(1)~~~JG=JC* \dfrac{2}{\sqrt5}=( p-n )*\dfrac{2}{\sqrt5} ...(2)\\(1)~ =~ (2),~~{\sqrt5} n=( p-n )*\dfrac{2}{\sqrt5} ,~~\therefore~n=\dfrac{2p}{7}...(3) \\\therefore~HB=2n=\dfrac{4p}{7}....(4)\\Also~~NM=\sqrt5 m.........(5)\\Using ~~(4), ~~NK=NH*\dfrac{2}{\sqrt5}=(AB-AN-HB)*\dfrac{2}{\sqrt5}\\=(p-m-\dfrac{4p}{7})*\dfrac{2}{\sqrt5} =(\dfrac{3p}{7} -m)*\dfrac{2}{\sqrt5}....(6) \\(5)~ =~ (6),~~{\sqrt5} m=((\dfrac{3p}{7} -m)*\dfrac{2}{\sqrt5} ,~~\therefore~m=\dfrac{6p}{7^2}...(7) \\From ~~(3)~and~(7)~~Area~~FGHJ= \dfrac{5*\dfrac{(2p)^2}{7^2}}{5*\dfrac{(6p)^2}{49^2} }*99=\boxed {\color{#D61F06}{539} }\\\large \text{You method is better. I have given above just little }\\\text{ different method. We can use analytical geometry also.}

Niranjan Khanderia - 6 years, 2 months ago

Nice and simple

Ivan Martinez - 6 years, 2 months ago
Ahmad Saad
Dec 4, 2016

Arnab Banerjee
Mar 30, 2015

An excellent one!!!!!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...