AIME Problem

Geometry Level 3

1 sin 4 5 sin 4 6 + 1 sin 4 7 sin 4 8 + 1 sin 4 9 sin 5 0 + + 1 sin 13 3 sin 13 4 = 1 sin n \frac {1}{\sin45^\circ \sin46^\circ } + \frac{1}{\sin 47^\circ \sin 48^\circ } + \frac{1}{\sin 49^\circ \sin 50^\circ }+ \cdots+ \frac{1}{\sin 133^\circ \sin 134^\circ }= \frac{1}{\sin n^\circ }

Find the least positive integer n n such that the equation above is satisfied.

1 4 π \pi 2 3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Note first that for the terms from 1 sin 9 1 sin 9 2 \dfrac{1}{\sin 91^{\circ} \sin 92^{\circ}} onward, we can rewrite them as

1 sin ( 18 0 k ) sin ( 18 0 ( k + 1 ) ) \dfrac{1}{\sin(180^{\circ} - k^{\circ}) \sin(180^{\circ} - (k + 1)^{\circ})} .

These terms, in reverse order, can then be written as

1 sin 4 6 sin 4 7 + 1 sin 4 8 sin 4 9 + . . . . + 1 sin 8 8 sin 8 9 \dfrac{1}{\sin 46^{\circ} \sin 47^{\circ}} + \dfrac{1}{\sin 48^{\circ} \sin 49^{\circ}} + .... + \dfrac{1}{\sin 88^{\circ} \sin 89^{\circ}} .

The entirety of the given sum can then be written as k = 45 89 1 sin k sin ( k + 1 ) \displaystyle\sum_{k=45}^{89} \dfrac{1}{\sin k^{\circ} \sin (k + 1)^{\circ}} .

Now anticipating a telescoping series on the horizon, note that

1 sin k sin ( k + 1 ) = sin ( ( k + 1 ) k ) sin 1 × 1 sin k sin ( k + 1 ) = \dfrac{1}{\sin k^{\circ} \sin (k + 1)^{\circ}} = \dfrac{\sin ((k + 1) - k)^{\circ}}{\sin 1^{\circ}} \times \dfrac{1}{\sin k^{\circ} \sin(k + 1)^{\circ}} =

1 sin 1 × sin ( k + 1 ) cos k cos ( k + 1 ) sin k sin k sin ( k + 1 ) = 1 sin 1 × ( cot k cot ( k + 1 ) ) \dfrac{1}{\sin 1^{\circ}} \times \dfrac{\sin(k + 1)^{\circ} \cos k^{\circ} - \cos(k + 1)^{\circ} \sin k^{\circ}}{\sin k^{\circ} \sin(k + 1)^{\circ}} = \dfrac{1}{\sin 1^{\circ}} \times (\cot k^{\circ} - \cot(k + 1)^{\circ}) .

The given sum then telescopes to

1 sin 1 k = 45 89 ( cot k cot ( k + 1 ) ) = 1 sin 1 × ( cot 4 5 cot 9 0 ) = 1 sin 1 × ( 1 0 ) = 1 sin 1 \dfrac{1}{\sin 1^{\circ}} \displaystyle\sum_{k=45}^{89} (\cot k^{\circ} - \cot(k + 1)^{\circ}) = \dfrac{1}{\sin 1^{\circ}} \times (\cot 45^{\circ} - \cot 90^{\circ}) = \dfrac{1}{\sin 1^{\circ}} \times (1 - 0) = \dfrac{1}{\sin 1^{\circ}} .

The correct option is thus n = 1 n = \boxed{1} .

Thank you for posting a nice solution.

Hana Wehbi - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...