AIME Problem

Consider the sequence defined by a k = 1 k 2 + k a_k = \frac{1}{k^2+k} for k 1 k \geq 1 .

Given that a m + a m + 1 + a m + 2 + + a n 1 = 1 31 a_m + a_{m+1} + a_{m+2} + \ldots + a_{n-1} = \frac{1}{31} , for positive integers m m and n n with m < n m < n . Find m + n m+n .


The answer is 960.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Ronak Agarwal
Jun 24, 2014

Note S n = k = 1 n 1 k 2 + k = k = 1 n 1 k 1 ( k + 1 ) { S }_{ n }= \sum _{ k=1 }^{ n }{ \frac { 1 }{ { k }^{ 2 }+k } } =\sum _{ k=1 }^{ n }{ \frac { 1 }{ k } -\frac { 1 }{ (k+1) } } . Hence applying V n { V }_{ n } method we get S n = 1 1 1 + n { S }_{ n }= 1-\frac { 1 }{ 1+n } . Now we had a m + a m + 1 . . . . . . . . + a n 1 = 1 31 { a }_{ m }+{ a }_{ m+1 }........+{ a }_{ n-1 }=\frac { 1 }{ 31 } . Now a m + a m + 1 . . . . . . . . + a n 1 = ( a 1 + a 2 + a 3 . . . . . . . . + a n 1 ) ( a 1 + a 2 + . . . . . . . + a m 1 ) = S n 1 S m 1. { a }_{ m }+{ a }_{ m+1 }........+{ a }_{ n-1 }=({ a }_{ 1 }+{ a }_{ 2 }+{ a }_{ 3 }........+{ a }_{ n-1 })-({ a }_{ 1 }+{ a }_{ 2 }+.......+{ a }_{ m-1 }) = { S }_{ n-1 }-{ S }_{ m-1. }

Applying our result we get 1 31 = ( 1 1 n ) ( 1 1 m ) = 1 m 1 n \frac { 1 }{ 31 } = (1-\frac { 1 }{ n } )-(1-\frac { 1 }{ m } )= \frac { 1 }{ m } -\frac { 1 }{ n } . Rearranging terms we get 31 ( n m ) = m n 31(n-m)=mn . Now since 31 31 is a prime implies either of m m or n n is a multiple of 31 31 . Let's assume m = 31 a m=31a where a ϵ I a \epsilon I . Then n 31 a = a n n = 31 a 1 a n-31a=an \Rightarrow n = \frac { 31a }{ 1-a } But since a 1 a\ge 1 implies n n is negative so m 32 a m \neq 32a . Let's assume n = 31 a n = 31a where a ϵ I a \epsilon I Then m = 31 a a + 1 m = \frac { 31a }{ a+1 } . Since m m is an integer implies a = 30 a=30 . Putting a = 30 a=30 we get m = 30 m=30 n = 930 n=930 . So m + n = 960 m+n=960

I`ve done exactly the same way

Ayush Garg - 6 years, 11 months ago
Raymond Lin
Aug 12, 2014

a k = 1 k 2 + k = 1 k 1 k + 1 a_k=\frac{1}{k^2+k}=\frac{1}{k}-\frac{1}{k+1} , so a m + a m + 1 + . . . + a n 1 = 1 m 1 m + 1 + 1 m + 1 1 m + 2 + . . . + 1 n 1 1 n = 1 m 1 n a_m+a_{m+1}+...+a_{n-1}=\frac{1}{m}-\frac{1}{m+1}+\frac{1}{m+1}-\frac{1}{m+2}+...+\frac{1}{n-1}-\frac{1}{n}=\frac{1}{m}-\frac{1}{n} .

1 m 1 n = 1 31 \frac{1}{m}-\frac{1}{n}=\frac{1}{31}

31 n 31 m m n = 0 31n-31m-mn=0

( n + 31 ) ( 31 m ) = 961 (n+31)(31-m)=961

Since n n must be positive, so is n + 31 n+31 . There are two ways to multiply two positive integers to get 961 961 : 1 961 1*961 and 31 31 31*31 .

n + 31 n+31 cannot equal neither 1 1 nor 31 31 if n n is positive, so we have n + 31 = 961 n+31=961 and 31 m = 1 31-m=1 , so m = 30 m=30 , n = 930 n=930 , and m + n = 960 m+n=\fbox{960} .

Same solution

Hans Gabriel Daduya - 3 years, 5 months ago
Keanu Ac
May 9, 2017

1/k^2 + k is 1/k - 1/k+1. Out of all numbers n less than 30 plugged into 1/n - x = 1/31, only 30 yields 1 on the numerator for x. 30 + 930 (which is the denominator of 1/n-1 + 1) = 960

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...