AIMO 2015 Q10

Geometry Level 5

X X is a point inside an equilateral triangle A B C ABC . Y Y is the foot of the perpendicular from X X to A C AC , Z Z is the foot of the perpendicular from X X to A B AB , and W W is the foot of the perpendicular from X X to B C BC .

The ratio of the distances of X X from the three sides of the triangle (respectively, A C AC , A B AB and B C BC ) is 1 : 2 : 4 1 : 2 : 4 .

If the area of A Z X Y AZXY is 13 cm 2 13 \text{ cm}^2 , find the area of A B C ABC .


Investigation

If X Y : X Z : X W = a : b : c XY:XZ:XW = a:b:c , find the ratio of the areas of A Z X Y AZXY and A B C ABC . Write your answers with proof in the solutions.


The answer is 98.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sum of two opposite angles in each of the three below quadrilaterals =90 + 90=180. AZXY, BWXZ, and CYXW are cyclic. They are also similar, corresponding angles equal. Δ X Y Z : a p p l y i n g C o s L a w , Z Y 2 = K 2 + ( 2 K ) 2 2 K 2 K C o s 60 = 7 K 2 . a p p l y i n g S i n L a w , S i n α K = S i n 120 Z Y . α = S i n 1 3 2 7 = 19.1066053 5 o B u t A X Y = α , s u b t e n d e d b y c h o r d X Y = K . A Y = K T a n α . \text{Sum of two opposite angles in each of the three below quadrilaterals =90 + 90=180.}\\ \therefore ~\text{AZXY, BWXZ, and CYXW are cyclic. They are also similar, corresponding angles equal.}\\ \Delta XYZ :- ~~applying ~Cos ~Law, ~ZY^2=K^2+(2K)^2 - 2*K*2K*Cos60=7K^2.\\ ~~~~~~~~~applying ~Sin~Law, ~ \dfrac {Sin\alpha} K=\dfrac{Sin120} {ZY}. ~\implies~\color{#3D99F6}{\alpha=Sin^{ - 1}\dfrac{\sqrt3}{2*\sqrt7}}=19.10660535^o\\ But ~\angle ~ AXY=\alpha, ~subtended ~ by ~ chord ~ XY=K. ~~ \therefore~AY =\dfrac {K}{Tan\alpha}. \\ A r e a o f Δ A X Y = 1 2 X Y K T a n α = 1 2 K 2 T a n α . S i m i l a r l y A r e a o f Δ A Z X = 1 2 ( 2 K ) 2 T a n ( 60 α ) . A r e a A Z X Y = 1 2 { K 2 T a n α + 4 K 2 T a n ( 60 α ) } = 1 2 { 1 T a n α + 4 T a n ( 60 α ) } K 2 = 3.75277675 K 2 = 13 \therefore ~ Area ~of ~ \Delta AXY=\frac 1 2 *XY*\dfrac {K}{Tan\alpha}=\frac 1 2*\dfrac {K^2}{Tan\alpha}. \\ Similarly~Area ~of ~ \Delta AZX=\frac 1 2*\dfrac {(2K)^2}{Tan(60 - \alpha)}. \\ \therefore ~Area_{AZXY}=\frac 1 2\{\dfrac {K^2}{Tan\alpha} + \dfrac {4K^2}{Tan(60 - \alpha)}\}= \frac 1 2\{\dfrac 1{Tan\alpha} + \dfrac 4 {Tan(60 - \alpha)}\}K^2=3 .75277675*K^2=13 \\ K 2 = 3.464101615 T h e A l t i t u t e = ( 1 + 2 + 4 ) K = 7 K . A r e a A B C = A l t i t u t e 2 3 K 2 = 49 3.464101615 3 = 98 \therefore ~\color{#EC7300}{K^2}=3.464101615 \\ The Altitute=(1+2+4)K=7K. ~~\\ \therefore Area_{ABC}=\dfrac{ Altitute^2}{\sqrt3}K^2=49*\dfrac{3.464101615 }{\sqrt3} = \Large ~~~~\color{#D61F06}{98} \\~~~~\\

A r e a A B C = ( a + b + c ) 2 3 G i v e n A r e a L . W h e r e L = 1 2 { a 2 T a n α + b 2 T a n ( 60 α ) } If X is a point in an equilateral triangle, sum of three perpendiculars from X to the sides = a l t i t u d e o f t h e t r i a n g l e . \color{#3D99F6}{Area_{ABC}=\dfrac{ (a+b+c)^2}{\sqrt3}*\dfrac{Given Area} L. ~~\\ Where ~L =\frac 1 2\{\dfrac {a^2}{Tan\alpha} + \dfrac {b^2}{Tan(60 - \alpha)}\}\\ \text{If X is a point in an equilateral triangle, sum of three perpendiculars from X to the sides} \\ =altitude ~of~ the~ triangle.}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...